A robust generalized Bayes estimator improving on the James-Stein estimator for spherically symmetric distributions

Yuzo Maruyama

Summary: The problem of estimating a mean vector for spherically symmetric distributions with the quadratic loss function is considered. A robust generalized Bayes estimator improving on the James-Stein estimator is given.

1 Introduction

Consider the linear regression model

\[Y = A\beta + e \]

(1.1)

where \(y \) is an \(N \times 1 \) response vector, \(A \) is an \(N \times p \) matrix of rank \(p \leq N \) of known constants, \(\beta \) is a \(p \times 1 \) vector of unknown parameters, and \(e \) is an \(N \times 1 \) vector of unobservable random errors. We assume that the error \(e \) has a spherically symmetric density \(\sigma^{-N} f(\|e\|^2/\sigma^2) \), where \(\sigma^2 \) is an unknown parameter and \(f(\cdot) \) is a nonnegative function on the nonnegative real line. We can easily derive the canonical form of (1.1). Let \(P \) be an \(N \times N \) orthogonal matrix such that

\[PA = \begin{pmatrix} (A'A)^{1/2} \\ 0 \end{pmatrix} \]

and let \(\theta = (A'A)^{1/2}\beta \). Hence two random vectors \(X = (X_1, \ldots, X_p)' \) and \(Z = (Z_1, \ldots, Z_n)' \) where

\[(X, Z) = PY \quad \text{and} \quad n = N - p \]

have the joint density of the form of

\[\sigma^{-p-n} f((\|x - \theta\|^2 + \|z\|^2)/\sigma^2), \]

(1.2)
where \(\theta \) is a \(p \times 1 \) vector of unknown parameters. References on these distributions which generalize the multivariate normal distribution in linear regression model are given by Kelker [8], Eaton [5], Fang and Anderson [6] and Kubokawa and Srivastava [11]. Then we consider the problem of estimating the mean vector \(\theta \) by \(\delta(X, Z) \) relative to the quadratic loss function \(L(\theta, \sigma^2, d) = ||d - \theta||^2/\sigma^2 \).

For the normal model, it is well-known that the usual minimax estimator \(X \) is inadmissible for \(p \geq 3 \) as shown in Stein [14]. James and Stein [7] succeeded in giving an explicit form of an estimator dominating \(X \) as

\[
\delta^JS = \left(1 - \frac{p-2}{n+2} \frac{||Z||^2}{||X||^2} \right) X,
\]

which is called the James-Stein estimator. For the spherically symmetric model, Cellier et al. [4] and Kubokawa and Srivastava [11] showed that the James-Stein estimator dominates the usual estimator \(X \) independent of \(f \) in (1.2), which does not need to be known. However it turns out that the James-Stein estimator is inadmissible since its positive-part estimator is superior to it as shown in Baranchik [2]. Moreover its positive-part estimator is not analytic and thus inadmissible. Therefore it has been of interest to derive analytic (generalized Bayes, if possible) estimators improving on \(X \) and the James-Stein estimator.

For the normal model, Lin and Tsai [12] derived a class of minimax generalized Bayes estimators. Kubokawa [9] showed that the estimator \(\delta_K = (1 - \phi_K(W)/W)X \), where \(W = ||X||^2/||Z||^2 \) and

\[
\phi_K(w) = w \int_0^1 \frac{\lambda^{p/2-1}(1 + \lambda w)^{-p/2-1} d\lambda}{\int_0^1 \lambda^{p/2-2}(1 + \lambda w)^{-p/2-1} d\lambda},
\]

which is included in Lin and Tsai’s class, dominates the James-Stein estimator. Moreover Kubokawa [10] derived a sufficient condition for domination over the James-Stein estimator and showed that \(\delta_K \) satisfies it. Maruyama [13] showed that some generalized Bayes estimators besides \(\delta_K \) satisfy Kubokawa’s [10] condition. However such estimators have not been derived for the spherically symmetric model yet.

In this paper, we show that Lin and Tsai [12] and Kubokawa’s [9, 10] results remain robust under a broad subclass of spherically symmetric distributions although these seem to depend upon the normality. In particular we recommend the use of \(\delta_K \) for any spherical symmetric distribution since it is minimax for any such \(f \), dominates the James-Stein estimator for those \(f \) which are unimodal, and is also generalized Bayes under the condition of a finite fourth moment.

2 Generalized Bayes estimators for spherically symmetric distributions

Letting \(\eta = \sigma^{-2} \), we consider the prior distribution whose joint density of \(\theta \) and \(\eta \) is proportional to \(\eta^a||\theta||^{-b} \). From the fact

\[
||\theta||^{-b} = \frac{\eta^{b/2}}{\Gamma(b/2)2^{b/2}} \int_0^1 \lambda^{b/2-1}(1 - \lambda)^{-b/2-1} \exp \left(-\frac{\eta \lambda}{2(1 - \lambda)||\theta||^2} \right) d\lambda,
\]

(2.1)
for $b > 0$, this prior is interpreted as the hierarchical prior

$$\theta | \lambda, \eta \sim N_p \left(0, \eta^{-1} \frac{1-\lambda}{\lambda} I_p\right), \quad \lambda \propto \lambda^{b/2-p/2-1}(1-\lambda)^{-b/2+p/2-1}, \quad \eta \propto \eta^{b/2-p/2+a},$$

which is a special case of ones considered in Lin and Tsai [12] and Alam [1] in the normal case of our problem. In the estimation of a multivariate normal mean with known variance, Baranchik [2] investigated the generalized Bayes estimator with respect to $\eta\|d-\theta\|^2$.

Under the quadratic loss function $\eta\|d-\theta\|^2$, the generalized Bayes estimator is given by $E(\eta|\theta,X,Z)/E(\eta|X,Z)$ and we have the generalized Bayes estimator with respect to our prior,

$$\begin{align*}
\int_{R^p} \int_0^{\infty} \theta \eta^{(n+p)/2+a+1} f(\eta(\|X-\theta\|^2 + \|Z\|^2)) \|\theta\|^{-b} d\theta d\eta \\
\int_{R^p} \int_0^{\infty} \eta^{(n+p)/2+a+1} f(\eta(\|X-\theta\|^2 + \|Z\|^2)) \|\theta\|^{-b} d\theta d\eta
\end{align*}$$

if $\int \eta^{(n+p)/2+a+1} f(\eta) d\eta < \infty$, which is equivalent to the finiteness of the $2(a+2)$-th moment of the distribution of X and Z. That is to say, the generalized Bayes estimator under the spherically symmetric case does not depend on f and hence coincides with one under the normal case. From (2.1) we have

$$\begin{align*}
\int_{R^p} \theta \exp \left(-\frac{\tau}{2} \|x-\theta\|^2 - \frac{\tau\lambda\|\theta\|^2}{2(1-\lambda)} \right) d\theta &= \left(\frac{2\pi(1-\lambda)}{\tau}\right)^{p/2} \exp(-\lambda\tau\|x\|^2/2)(1-\lambda)x \\
\int_{R^p} \exp \left(-\frac{\tau}{2} \|x-\theta\|^2 - \frac{\tau\lambda\|\theta\|^2}{2(1-\lambda)} \right) d\theta &= \left(\frac{2\pi(1-\lambda)}{\tau}\right)^{p/2} \exp(-\lambda\tau\|x\|^2/2).
\end{align*}$$

Moreover from the relation

$$\int_0^{\infty} \tau^{n/2+a+1+b/2} \exp \left(-\frac{\tau\lambda\|x\|^2 + \|z\|^2}{2} \right) = \frac{\Gamma(n/2 + a + b/2 + 2) 2^{n/2+a+b/2} 2^{n/2+a+b/2+2}}{\Gamma(1/2 + w\lambda)}$$

where $w = \|x\|^2/\|z\|^2$, we have the generalized Bayes estimator $\delta_{a,b}(X,Z) = (1 - \phi_{a,b}(W)/W)\mathcal{X}$ where

$$\phi_{a,b}(w) = w \int_0^1 \lambda^{b/2}(1-\lambda)^{p/2-b/2-1}(1 + w\lambda)^{-n/2-a-b/2-2} d\lambda$$

which is well-defined if $0 < b < p$ and $n/2 + a + b/2 + 2 > 0$. Note that $\delta_K = \delta_{a,b}$ for $a = 0$ and $b = p - 2$.

Here we summarize the result on the property of $\delta_{a,b}$.
Theorem 2.1 For $0 < b < p$, $n/2 + a + b/2 + 2 > 0$ and any spherically symmetric distribution, the $2(a+2)$-th moment of which is finite, $\delta_{a,b}$ is generalized Bayes with respect to the density $n^a \| \theta \|^{-b}$.

The properties of the behavior of $\phi_{a,b}(w)$ is as follows.

Theorem 2.2

1. $\phi_{a,b}(w)$ is monotone increasing in w if $0 < p \leq p - 2$.

2. $\lim_{w \to \infty} \phi_{a,b}(w) = b/(n + 2a + 2)$ if $a > -n/2 - 1$ and

$$|\phi_{a,b}(w) - b/(n + 2a + 2)| = \begin{cases} O\{(w + 1)^{-n/2-a-1}\} & \text{for } b = p - 2 \\ O\{(w + 1)^{-1}\} & \text{for } 0 < b < p - 2. \end{cases}$$

Proof: By the change of variables, we have

$$\phi_{a,b}(w) = \frac{\int_0^w t^{b/2}(1 - t/w)^{p/2-b/2-1}(1 + t)^{-n/2-a-b/2-2} dt}{\int_0^w t^{b/2-1}(1 - t/w)^{p/2-b/2-1}(1 + t)^{-n/2-a-b/2-2} dt}.$$

For $w_1 > w_2$ and $0 < b \leq p - 2$,

$$\frac{\int_0^{w_1} t^{b/2}(w_1 - t)^{p/2-b/2-1}(1 + t)^{-n/2-a-b/2-2} dt}{\int_0^{w_1} t^{b/2-1}(w_1 - t)^{p/2-b/2-1}(1 + t)^{-n/2-a-b/2-2} dt} \geq \frac{\int_0^{w_2} t^{b/2}(w_1 - t)^{p/2-b/2-1}(1 + t)^{-n/2-a-b/2-2} dt}{\int_0^{w_2} t^{b/2-1}(w_1 - t)^{p/2-b/2-1}(1 + t)^{-n/2-a-b/2-2} dt} \geq \frac{\int_0^{w_2} t^{b/2}(w_2 - t)^{p/2-b/2-1}(1 + t)^{-n/2-a-b/2-2} dt}{\int_0^{w_2} t^{b/2-1}(w_2 - t)^{p/2-b/2-1}(1 + t)^{-n/2-a-b/2-2} dt}.$$

The first inequality is from the fact that the ratio of integrands of the numerator and the denominator is increasing, the second inequality from the fact that $\{(w_2 - t)/(w_1 - t)\}^{p/2-b/2-1}$ is increasing. This completes the proof of part 1.

From an identity

$$\int_0^1 \lambda^a (1 - \lambda)^\beta (1 + w\lambda)^{-\gamma} d\lambda = (w + 1)^{-\alpha-1} \int_0^1 t^a (1 - t)^\beta (1 - tw/(w + 1))^{-\alpha-\beta+\gamma-2} dt,$$

we have

$$\phi_{a,b}(w) = v \frac{\int_0^1 t^{b/2}(1 - t)^{p/2-b/2-1}(1 - vt)^{-p/2+n/2+a+b/2+1} dt}{\int_0^1 t^{b/2-1}(1 - t)^{p/2-b/2-1}(1 - vt)^{-p/2+n/2+a+b/2+2} dt}$$

for $v = w/(w + 1)$, which implies that

$$\lim_{w \to \infty} \phi_{a,b}(w) = \frac{\int_0^1 t^{b/2}(1 - t)^{n/2+a} dt}{\int_0^1 t^{b/2-1}(1 - t)^{n/2+a+1} dt} = \frac{b}{n + 2a + 2}.$$
for $0 < b < p$ and $a > -n/2 - 1$. When $0 < b \leq p - 2$, applying an integration by parts gives

$$
\phi_{a,b}(w) = - \frac{(n/2 + a + 1)^{-1}(1 - v)^{n/2+a+1}}{\int_0^1 t^{p/2-2}(1 - vt)^{n/2+a+1}dt} + \frac{b}{n + 2a + 2} \tag{2.3}
$$

for $b = p - 2$ and

$$
\phi_{a,b}(w) = \frac{b}{n + 2a + 2} - \frac{p - b - 2}{n + 2a + 2}(1 - v)
\times \frac{\int_0^1 t^{b/2}(1 - t)^{p/2-b/2-2}(1 - vt)^{-p/2+n/2+a+b/2+1}dt}{\int_0^1 t^{b/2-1}(1 - t)^{p/2-b/2-1}(1 - vt)^{-p/2+n/2+a+b/2+2}dt}, \tag{2.4}
$$

for $0 < b < p - 2$. From (2.3) and (2.4), we can easily see that $|b/(n + 2a + 2) - \phi_{a,b}| = O\{(w + 1)^{-n/2-a-1}\}$ for $b = p - 2$ and $= O\{(w + 1)^{-1}\}$ for $0 < b < p - 2$, which completes the proof of part 2.

3 Improving on X and the James-Stein estimator

$$
E[(X_i - \theta_i)h(X)] = \sigma^2 \int \frac{\partial}{\partial x_i} h(x) F \left(\frac{\|x - \theta\|^2 + \|z\|^2}{\sigma^2} \right) dx dz,
$$

$$
E[\|z\|^2 g(\|z\|^2)] = \sigma^2 \int \left(ng(\|z\|^2) + 2\|z\|^2 g'(\|z\|^2) \right) F \left(\frac{\|x - \theta\|^2 + \|z\|^2}{\sigma^2} \right) dx dz,
$$

for suitable f and g. By using these identities, the risk of an estimator of the form

$$
\delta_\phi(X, Z) = (1 - \phi(\|X\|^2/\|Z\|^2)\|Z\|^2/\|X\|^2)X
$$

is expressed as

$$
R(\theta, \sigma^2, \delta_\phi) = E \left[\frac{\|X - \theta\|^2}{\sigma^2} \right] + \sigma^{-2} E \left[\phi^2 \left(\frac{\|X\|^2}{\|Z\|^2} \right) \frac{\|Z\|^4}{\|X\|^4} \right] + 2E \left[\frac{(X - \theta)'X}{\sigma^2} \phi \left(\frac{\|X\|^2}{\|Z\|^2} \right) \frac{\|Z\|^2}{\|X\|^2} \right]
$$

$$
= p + \int_{\Re^p} \int_{\Re^p} \left(\frac{\phi(w)}{w} \right) \{ (n + 2)\phi(w) - 2(p - 2) \}
- 4\phi'(w)(1 + \phi(w)) \sigma^{-p-n} F((\|x - \theta\|^2 + \|z\|^2)/\sigma^2) dx dz, \tag{3.1}
$$

where $w = \|x\|^2/\|z\|^2$ and $F(u) = 2^{-1} \int_0^\infty f(t)dt$. Hence a sufficient condition for dominance over the natural estimator X is derived as follows.

Theorem 3.1 (Kubokawa and Srivastava) Assume that $\phi(w)$ is monotone nondecreasing and $0 \leq \phi(w) \leq 2(p - 2)/(n + 2)$ for every $w \geq 0$. Then δ_ϕ dominates X.

This sufficient condition under the normal case was derived by Baranchik [3].

Among a simple class of shrinkage estimators \(\delta_{\phi} \) with \(\phi(w) = c \), the optimal \(c \), denoted by \(c^* \), is \((p-2)/(n+2) \) and \(\delta_{c^*} \) is of course the James-Stein estimator. It is well-known that the James-Stein estimator is inadmissible since its positive-part estimator dominates it. In the following, we present a sufficient condition for dominance over the James-Stein estimator which is the generalization of Kubokawa’s [10] result.

Theorem 3.2 Assume that \(\phi(w) \) is monotone nondecreasing, \(\lim_{w \to \infty} \phi(w) = (p-2)/(n+2) \) and \(\phi(w) \geq \phi_K(w) \) for every \(w \geq 0 \). Then \(\delta_{\phi} \) dominates the James-Stein estimator for unimodal spherically symmetric distributions.

Proof: By letting \(\Phi(w) = w^{-1}\phi\{(n+2)\phi - 2(p-2)\} - 4\phi'(1 + \phi) \) and by using the transformation to the polar coordinates, the second term of the right-hand side of (3.1) is written as

\[
\int_{R^p} \int_{R^n} \Phi(w) \sigma^{p-2} F((\|x - \theta\|^2 + \|z\|^2)/\sigma^2) dx dz
\]

\[
\begin{align*}
&= \int_{R^p} \int_{R^n} \Phi \left(\frac{\|x\|^2}{\|z\|^2} \right) F((\|x - \theta\|/\sigma)^2 + \|z\|^2) dx dz \\
&= C \int_0^\infty \int_0^\infty \int_0^{\pi} \Phi \left(\frac{s^2}{t^2} \right) F(s^2 - 2s\lambda^{1/2}\cos \varphi + \lambda + t^2) \\
&\quad \cdot \sin^{p-2} \varphi s^{p-1} t^{n-1} ds dt d\varphi \\
&= C \int_0^\infty \int_0^\infty \int_0^{\pi} \Phi(w) F(s^2 - 2s\lambda^{1/2}\cos \varphi + \lambda + s^2/w) \\
&\quad \cdot w^{-(n+1)/2} \sin^{p-2} \varphi w^{p+n-1} ds dw d\varphi,
\end{align*}
\]

where \(C = 4\pi^{(p+n-1)/2}/\{\Gamma((p-1)/2)\Gamma(n/2)\} \) and \(\lambda = \|\theta\|^2/\sigma^2 \). Letting

\[
g_\lambda(w) = \frac{w^{p/2-1}}{(1 + w)^{(p+n)/2}} \int_0^\pi \int_0^\infty F(u^2 - 2\lambda^{1/2}(1 + 1/w)^{-1/2} u \cos \varphi + \lambda) \\
\quad \cdot u^{p+n-1} \sin^{p-2} \varphi du d\varphi,
\]

we have

\[
R(\theta, \sigma^2, \delta_{JS}) - R(\theta, \sigma^2, \delta_{\phi}) = C \int_0^\infty \left(-\frac{(p-2)^2}{(n+2)w} - \Phi(w) \right) g_\lambda(w) dw.
\]

By a definite integral

\[
\left[v(w) \int_0^w s^{-1} g_\lambda(s) ds \right]_0^\infty = \int_0^\infty v'(w) \int_0^w s^{-1} g_\lambda(s) ds dw + \int_0^\infty \frac{v(w)}{w} g_\lambda(w) dw
\]
for a differentiable function $v(w)$. Letting $(w) = \phi\{(n + 2)\phi - 2(p - 2)\}$ in the above equality and noting that $\lim_{w \to \infty} \phi(w) = (p - 2)/(n + 2)$, we have

$$R(\theta, \sigma^2, \delta_{JS}) - R(\theta, \sigma^2, \delta_\phi) = C \int_0^\infty \phi'(w) \left\{ (n + 2)\phi(w) - p + 2 \right\} \int_w^\infty s^{-1}g_\lambda(s)ds + 2(1 + \phi(w))g_\lambda(w) \right\} dw.$$ (3.2)

Since $g_\lambda(w)/g_0(w)$ is nondecreasing in w by Lemma 3.3 in the below, we have

$$g_\lambda(w)/\int_0^w s^{-1}g_\lambda(s)ds \geq g_0(w)/\int_0^w s^{-1}g_0(s)ds,$$

and hence we have

$$R(\theta, \sigma^2, \delta_{JS}) - R(\theta, \sigma^2, \delta_\phi) \geq C \int_0^\infty \phi'(w) \left\{ (n + 2)\phi(w) - p + 2 + \frac{2(1 + \phi(w))g_0(w)}{\int_0^w s^{-1}g_0(s)ds} \right\} \int_0^w s^{-1}g_\lambda(s)ds dw.$$ (3.3)

Since $\phi_K(w)$ can be expressed as

$$\phi_K(w) = \frac{(p - 2)\int_0^w s^{-1}g_0(s)ds - 2g_0(w)}{(n + 2)\int_0^w s^{-1}g_0(s)ds + 2g_0(w)}$$ (3.3)

we have the theorem.

Combining (3.2) and (3.3), we have $R(0, \sigma^2, \delta_{JS}) = R(0, \sigma^2, \delta_K)$, which implies that δ_K can never dominate the James-Stein positive-part estimator unfortunately.

Lemma 3.3 $g_\lambda(w)/g_0(w)$ is nondecreasing in w if $f(\cdot)$ is monotone nonincreasing.

We note that the unimodality assumption corresponds to the fact the function f is nonincreasing.

Proof: We have only to show that

$$h(w) = \int_0^\pi F(u^2 - 2\lambda^{1/2}(1 + 1/w)^{-1/2}u \cos \varphi + \lambda \sin^{p-2} \varphi \cos \varphi d\varphi,$$

for fixed u and λ is nondecreasing. The derivative of $h(w)$ is

$$\frac{d}{dw}h(w) = d\int_0^\pi f(u^2 - 2\lambda^{1/2}(1 + 1/w)^{-1/2}u \cos \varphi + \lambda \cos \varphi \sin^{p-2} \varphi \cos \varphi d\varphi$$

$$= d\int_0^{\pi/2} f(u^2 - 2\lambda^{1/2}(1 + 1/w)^{-1/2}u \cos \varphi + \lambda \cos \varphi \sin^{p-2} \varphi \cos \varphi d\varphi$$

$$- d\int_0^{\pi/2} f(u^2 + 2\lambda^{1/2}(1 + 1/w)^{-1/2}u \cos \varphi + \lambda \cos \varphi \sin^{p-2} \varphi \cos \varphi d\varphi$$
where \(d = 2^{-1}w^{-2}(1 + 1/w)^{-3/2}\lambda^{1/2}u \). The assumption of the lemma on \(f \) guarantees that \(h(w) \) is nondecreasing in \(w \).

Combining Theorem 3.1 and 3.2, we have the results on the decision-theoretic properties of \(\delta_{a,b} \).

Theorem 3.4

1. \(\delta_{a,b} \) is minimax for any spherically symmetric distributions if \(a > -n/2 - 1, \ 0 < b \leq p - 2 \) and \(b/(n + 2a + 2) < 2(p - 2)/(n + 2) \).

2. \(\delta_K \), which equals to \(\delta_{0,p-2} \), dominates the James-Stein estimator under the unimodal spherically symmetric distributions.

Note that among the minimax generalized Bayes estimators \(\delta_{a,b} \), only \(\delta_{0,p-2} \) satisfies the sufficient condition of Theorem 3.2. We thus recommend the use of \(\delta_K \) for any spherical symmetric distribution since it is minimax for any such \(f \), dominates the James-Stein estimator for those \(f \) which are unimodal, and is also generalized Bayes under the condition of a finite fourth moment.

Remark 3.5
The problem addressed in the paper is expected to have a relationship with some other estimation problems, in particular, the estimation of a scale parameter \(\sigma^2 \) with an unknown \(\theta \) and the estimation of \(\theta \) with known \(\sigma^2 \). But unfortunately we cannot establish a similar robustness property.

Acknowledgements

I would like to thank three referees for many valuable comments and helpful suggestions that led to an improved version of the paper.

References

Yuzo Maruyama
Center for Spatial Information Science
Faculty of Economics
The University of Tokyo
7–3–1 Hongo, Bunkyo–ku
Tokyo, 113–0033, Japan
maruyama@csis.u-tokyo.ac.jp