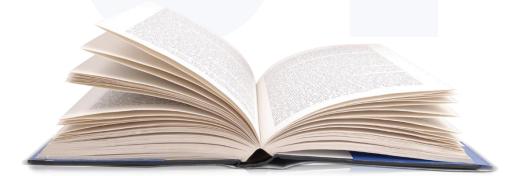
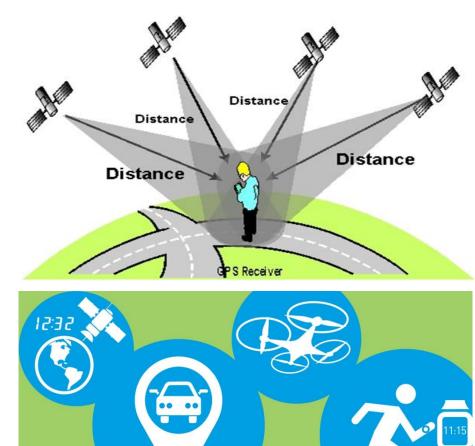


MADOCA PPP Introduction

Yize Zhang zhyize@163.com Tokyo University of Marine Science and Technology





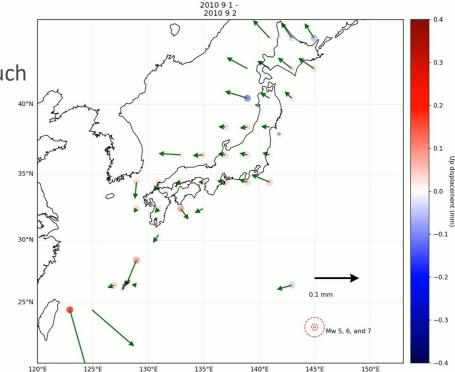
GNSS and QZSS

What is GNSS?

- GNSS is a constellation of satellites providing signals from space that transmit positioning and timing data to GNSS receivers.
- GNSS can provide positioning, navigation, and timing (PNT) service for users on the ground and space..

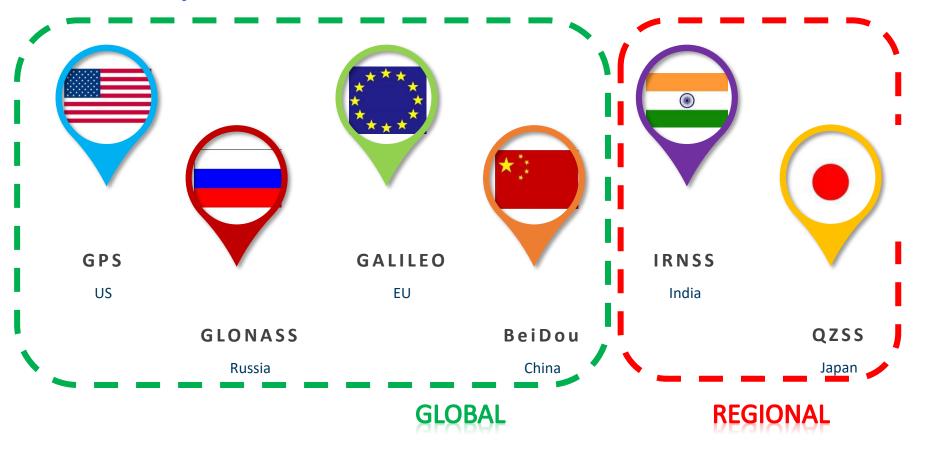
https://www.spirent.com/blogs/positioning/2017/january/what-does-2017-hold-for-gnss

GNSS in earthquake monitoring

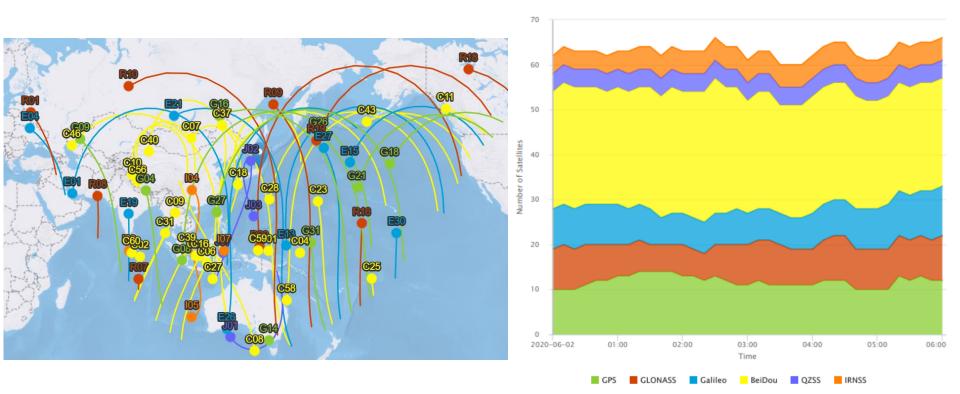

GNSS can also aplied in many other areas such as earthquake monitoring, atmosphere monitoring, message communication.

Months-long thousand-kilometre-scale wobbling before great subduction earthquakes

Jonathan R. Bedford ^I, Marcos Moreno, Zhiguo Deng, Onno Oncken, Bernd Schurr, Timm John, Juan Carlos Báez & Michael Bevis

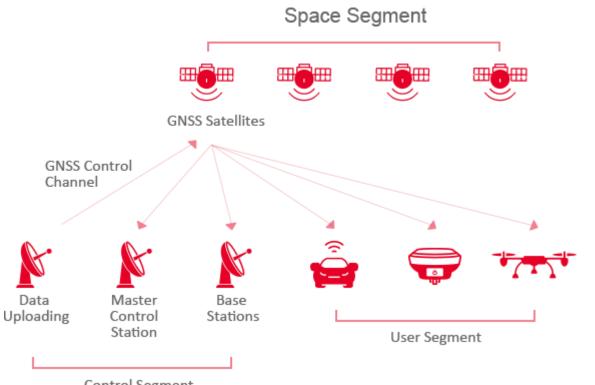

 Nature
 580, 628–635(2020)
 Cite this article

 3310
 Accesses
 362
 Altmetric
 Metrics



https://www.nature.com/articles/s41586-020-2212-1

GNSS systems



GNSS visibility at Tokyo

https://www.gnssplanning.com

GNSS segments

Control Segment

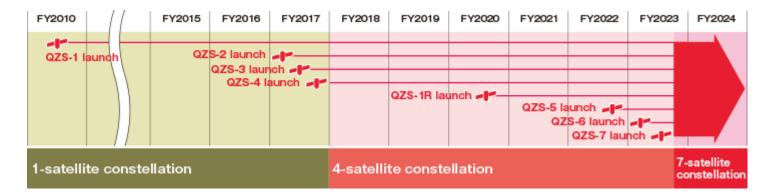
https://www.tersus-gnss.com/technology

QZSS

QZSS is a Japanese satellite positioning system composed mainly of satellites in quasi-zenith orbits (QZO).

QZSS has been operated as a four-satellite constellation from November 2018, and at least three satellites are visible at all times from locations in the Asia-Oceania region. QZSS can be used in an integrated way with other GNSS systems.

http://qzss.go.jp/en/


QZSS visibility at Tokyo

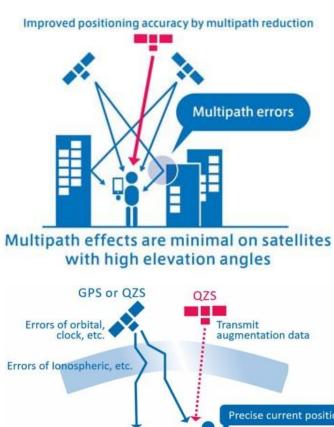
https://app.qzss.go.jp/GNSSView/gnssview.html

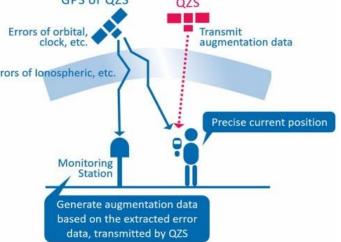
QZSS development

Satellite	PRN	BLOCK	Туре	Longitude	Launch	
QZS-1	J01	IQ	IGSO	130~140°E	2010.09.11	
QZS-2	J02	IIQ	IGSO	130~140°E	2017.06.01	
QZS-3	J07	lIG	GEO	126.9~127.1°E	2017.08.19	
QZS-4	J03	IIQ	IGSO	130~140°E	2017.10.09	

http://qzss.go.jp/en/

QZSS signals and services


Frequency	Signal	Service			
1575.42MHz	L1C/A	PNT			
	L1C	PNT			
	L1S	Sub-meter Level Augmentation Service(SLAS) Satellite Report for Disaster and Crisis Management (DC Report)			
	L1Sb	SBAS			
1227.60MHz	L2C	PNT			
1176.45MHz	L5	PNT			
	L5S	Positioning Technology Verification Service			
1278.75MHz	L6D	Centimeter Level Augmentation Service (CLAS)			
	L6E	Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis (MADOCA)			

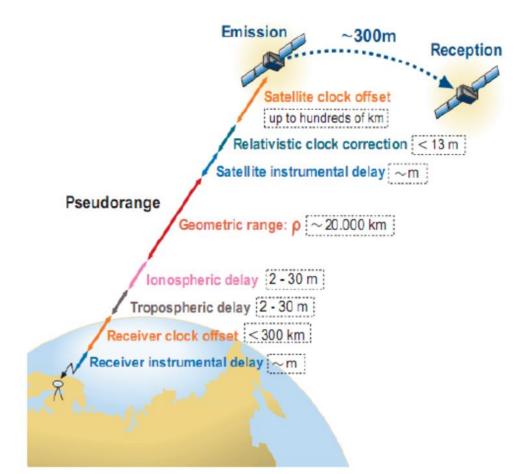

http://qzss.go.jp/en/

Benefit of QZSS

(1) Increase visible satellite number; high elevation at most East-Asia countries, with small multipath errors in urban environment.

(2) QZSS transmit different types of augmentation data (SLAS, CLAS, MADOCA), enable different level of positioning service.

GNSS Positioning Techniques



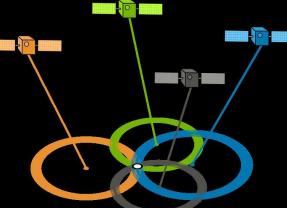
GNSS Positioning Techniques

Point PositioningSPP (Single Point Positioning)Point PositioningPPP (Precise Point Positioning)

Relative Positioning Relative Positioning RTK (Real Time Kinematic)

GNSS Observation and Errors

SPP


oł

• SPP: With code observation(pseudo-range) from at least 4 satellites, we can know the receiver positioning from by Least Square or Kalman Filter.

- i

$$P_{f}^{j} = \rho^{j} + c \cdot \delta t_{f} - c \cdot \delta t_{f}^{j} - \Delta_{rela}^{j} + T^{j} - \frac{1}{f_{f}^{2}} + \epsilon_{P_{f}}$$

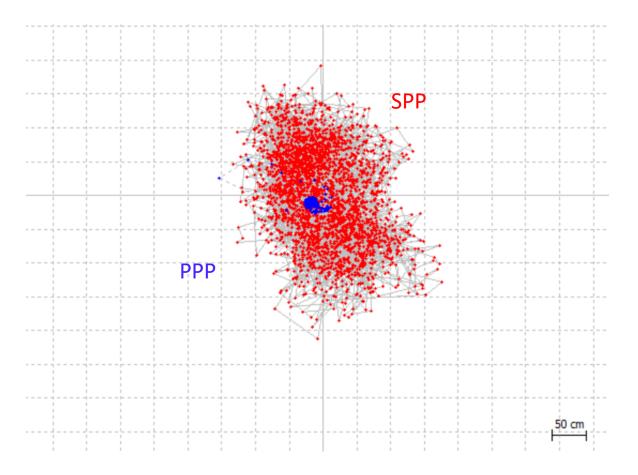
$$Pseudo-range observation Geometric distance from satellite to receiver(X, Y, Z) \\ Receiver clock \\ Relativity correction \\ Satellite clock \\ Satellite clock \\ Correction \\$$

led

From SPP to PPP

	SPP	РРР
Observables	Code(30cm)	Code (30cm)+Carrier phase (3mm)
Satellite ephemeris	Broadcast ephemeris (0.5~2m)	Precise ephemeris (1cm~10cm)
Error correction	lonosphere, troposphere, relativity	lonosphere, troposphere, relativity, instrument delay (DCB), phase windup, tidal correction
Positioning accuracy	1~10m(Kinematic)	1~2cm(Static), 5~20cm(Kinematic)

Why we can get high accuracy from PPP?

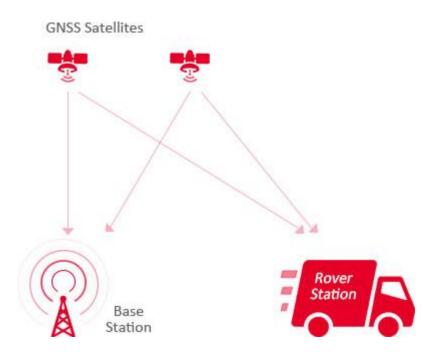

- ✓1 Carrier phase observation is used
- ✓ 2 Precise ephemeris (orbit and clock) is used
- ✓ 3 All errors are considered
- ✓4 All inaccurate errors are estimated

Accuracy of different ephemeris

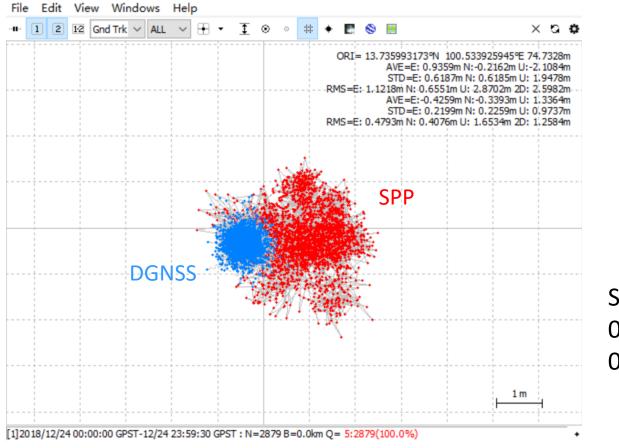
Туре		Accuracy	Latency	Updates	Sample Interval	
	orbits	~100 cm			daily	
Broadcast	Sat. clocks	~5 ns RMS ~2.5 ns SDev	—— real time			
Littre Denid (nuclisted helf)	orbits	~5 cm	real times			
Ultra-Rapid (predicted half)	Sat. clocks	~3 ns RMS ~1.5 ns SDev	—— real time	at 03, 09, 15, 21 UTC	nin ci	
	orbits	~3 cm			15 min	
Ultra-Rapid (observed half)	Sat. clocks	~150 ps RMS ~50 ps SDev	3 - 9 hours	at 03, 09, 15, 21 UTC		
Denid	orbits	~2.5 cm	47 44 haven		15 min	
Rapid	Sat. & Stn. clocks	~75 ps RMS ~25 ps SDev	17 - 41 hours	at 17 UTC daily	5 min	
F	orbits	~2.5 cm			15 min	
Final	Sat. & Stn. clocks	~75 ps RMS ~20 ps SDev	—— 12 - 18 days	every Thursday	Sat.: 30s Stn.: 5 min	

http://www.igs.org/products

SPP vs. PPP



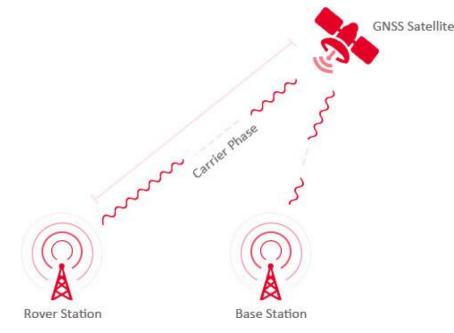
DGNSS


For two stations within a few kilometers, the errors from satellite and atmosphere, is at the similar level.

By setting up a base station, we can use the "station differencing" strategy to remove the common errors.

Similar as SPP, DGNSS is based on code observation.

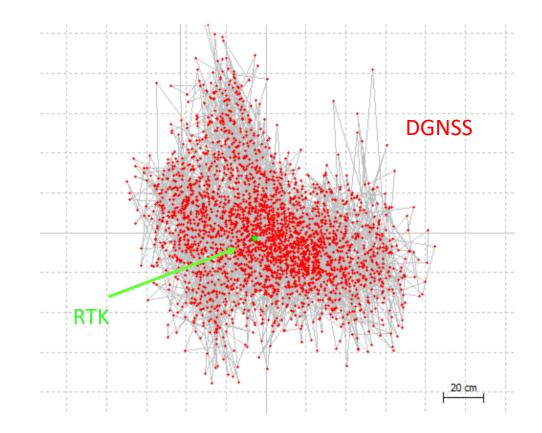
SPP vs. DGNSS



STD improve from [0.62, 0.62,1.95]m to [0.22, 0.23, 0.97]m

RTK

Similar as DGNSS, RTK also needs a base station to eliminate most errors. What is more, carrier phase observation is also used.


Compared with PPP, RTK can fix the ambiguity within short time(e.g. several seconds), thus provides 1~3cm positioning solution accuracy instantaneously.

Why we can get high accuracy from RTK?

- ✓1 Carrier phase observation is used
- ✓ 2 Errors from satellite and atmosphere are eliminated
- ✓3 Ambiguity can be fixed

DGNSS vs. RTK

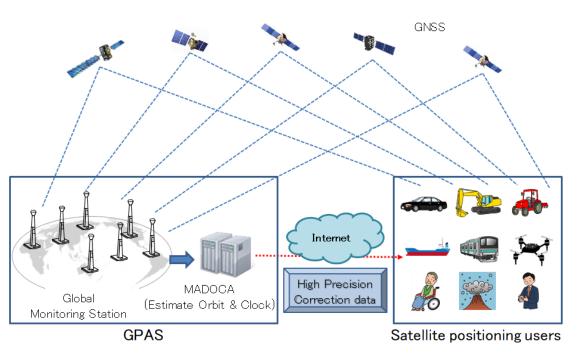
MADOCA PPP

Real-time PPP

- For post-processing PPP, we can use IGS or JAXA precise orbit and clock file;
- For real-time PPP, we can use State Space Representation (SSR) correction with broadcast ephemeris.
- In real-time PPP, the residual part satellite orbit and clock error in broadcast ephemeris is corrected by SSR message (BRDC+SSR), making the accuracy of orbit and clock within 10 cm.
- For other error correction and parameter estimation, it is same as the post-processed PPP.

SSR and OSR (Observation Space Representation)

- OSR describes lump sum of GNSS errors. Example: network RTK(VRS, MAC, FKP);
- SSR describes each individual GNS error. Example: PPP.
- Benefit of SSR:
- ✓ SSR requires low bandwidth for large areas;
- ✓ Unlimited number of users and costs;
- ✓ Different service with different accuracy;
- ✓ Single/dual/triple frequency application;
- ✓ Independent of GNSS(troposphere and ionosphere).


SSR message

Message Name
SSR GPS Orbit Correction
SSR GPS Clock Correction
SSR GPS Code Bias
SSR GPS Combined Orbit and Clock Corrections
SSR GPS URA
SSR GPS High Rate Clock Correction
SSR GLONASS Orbit Correction
SSR GLONASS Clock Correction
SSR GLONASS Code Bias
SSR GLONASS Combined Orbit and Clock Correction
SSR GLONASS URA
SSR GLONASS High Rate Clock Correction

.

.

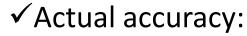
What is MADOCA?

 ✓ MADOCA(Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis) is developed by JAXA/GPAS.

✓ MADOCA provides GPS/GLONASS/QZSS orbit and clock SSR corrections through QZSS or internet in real-time.

https://www.gpas.co.jp/en/service_madoca.php

MADOCA products


RTCM SSR format

Product	Interv	/al	RTCM Message			
Product	Estimation	Provide	GPS	GLONASS	QZSS	
Orbit correction	30	1	1057	1063	1246	
Clock correction	1	1	1058	1064	1247	
HR-Clock correction	1	1	1062	1068	1251	
URA	1	1	1061	1067	1250	

MADOCA products accuracy

✓ Goal of orbit/clock accuracy:

Product		ffline	Real-Time			
	GPS	GLO QZS	GPS	GLO QZS		
OBT	3cm	7cm	6cm	9cm		
CLK	0.1ns	0.25ns	0.1ns	0.25ns		

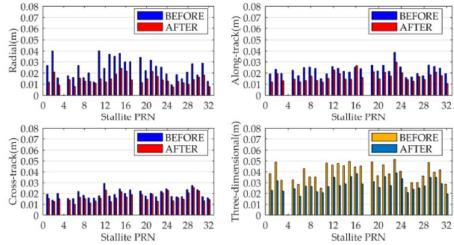


Figure 4. Seven-day average-RMS errors of all available GPS satellites in radial, along/cross-track, and three-dimensional (3D) directions.

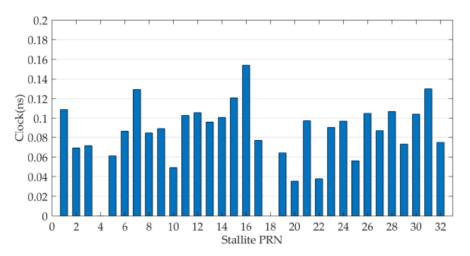
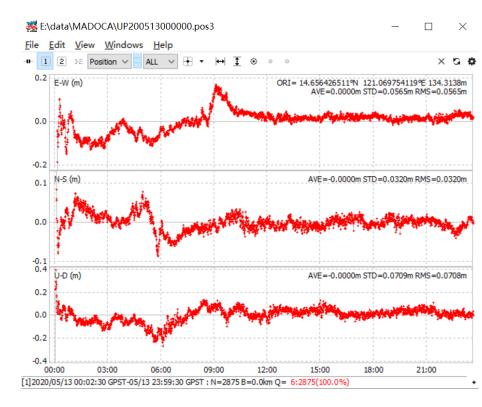


Figure 6. Seven-day average-STD clock errors of all available GPS satellites.

dx.doi.org/10.3390/s19112580

MADOCA products

✓1 Real-time message from QZSS L6E signal (signal decoding, only areas where QZSS is visible)


✓ 2 Real-time message from Ntrip (User account required, global, internet required)

✓ 3 Offline RTCM3 SSR file from FTP (For post-processing)

Real-time MADOCA PPP from QZSS L6E signal

 The MSJ(Magellan System Japan) receiver can provide high precision positioning by using L6 signal from QZSS.

Real-time MADOCA PPP from Ntrip

RTKNAVI ver.2.4.3 b31

- GPASLIB
- MAD-PI; MAD-WIN; MADDRIOD (Webinar 3)

2000/01/01	Input Stre	ams								\times
∷ Lat/Lon/ŀ	Input Stream			Туре		Opt	Cmd	Format		Opt
	🗹 (1) Rov	er	Serial		\sim			RTCM 3	\sim	
Solution:	(2) Base	e Station	Serial		\sim			RTCM 2	\sim	
N:	🗹 (3) Corr	rection	NTRIP C	lient	\sim			RTCM 3	\sim	
E:	Transmit N OFF	NTRIP Client Options						×		
He:	Reset Cmc	NTRIP Caster Host				Port			km	
N: 0.000 E Age: 0.0 ≤	Input File I	madoca.ntr	ip-mgm.n	et			~ 2	2101		Na fi
1350.010 -	al ibraic contact	Mountpoint		User-ID			P	assword		
		MDC0	~	*****			•	•••••		
<		String								
► <u>S</u> tart	Time	<u>N</u> trip				<u>о</u> к		<u>C</u> ancel		K UA

Monitoring of MADOCA performance

 We are monitoring the performance of MADOCA PPP in some Asian and Oceanian countries.

Thank you!