

applications of UAVs amazon

UAV specifications Product name Aircraft class Dimensions Weight Max flight speed Max ascent/descent speed Communication distance Max flight time Payload

DJI PHANTOM[®] 2 Quadcopter 350 x 350 x 190 mm 1000 g15 m/s6 m/s1000 m 25 mins. 400 g (empirical value)

Operation of UAS

Camera specifications Product name NIKON COOLPIX A[®] 16.2 million 23.6 x 15.6 mm Pixels Image sensor Dimensions 111.0 x 64.3 x 40.3 mm Weight $299~{\rm g}$ More than 1 second Interval shooting More than 6,000 photos (SDXC64GB) Maximum number of Duration of battery Approx. 70 min. GNSS unit specification NIKON GP-1A Product name 18 (SBAS compliant) Tracking channels Update rate Once per second Geodesics WGS84 Horizontal 10 m RMS 45.5 x 25.5 x 50 mm Accuracy Dimensions

 $24 ext{ g}$

shutter

aperture

ISO

Weight

exposure

150

128.5

67.9

45

22.5

15.0

11.3

9.0

7.5

6.4

5.6

5.0

4.5

3.9

.4 194.1

Flight height, speed, and resolution							
操行高度・速度と撮影間層(大学), 紙点距離128 mm(35 mm 7 小人は費引), 65 % 重進, 短辺方向 に飛行を仮定 Shot intervals (bold letters) for various flight heights and flight speeds assuming 28 mm lens (equivalent to 35 mm film size), 65 % overlap, head-forward camera orientation. (by Inoue et al., 2014)	Flight height (r	10	20	50	100		
	Left-Right size	12.9	25.9	64.7	129.4		
	Front-Back size	8.6	17.1	42.8	85.7		
	L-R shot interval (m)		4.5	9.1	22.6	45.3	
	F-B shot interv	3	6	15	30		
	Flight Speed (m/s)	2	1.5	3	7.5	15	
		3	1.0	2	5	10	
		4	0.8	1.5	3.8	7.5	
		5	0.6	1.2	3.0	6.0	
		6	0.5	1.0	2.5	5.0	
		7	0.4	0.9	2.1	4.3	
		8	0.4	0.8	1.9	3.8	
		9	0.3	0.7	1.7	3.3	
		10	0.3	0.6	1.5	3.0	
	Ground resolution (cm/px)			0.5	1.3	2.6	

Updating UAV survey system Up to now

speed Av Mode Tv Mode locks shutter speed 57 -All i Less s th of Field Less 100 ሳ ISO Ape F22 E 200 F16 F11 x posu 400 (s F8 F5.6 (se F4 F2.8 F2 r t s 800 pe u 1600 r e F1.4 F1 3200 Subject in focus (Less Depth of Field) More Noise (arain) More motion blur 9.07 4.9 + 2005 Eric S

	Phantom2 & CoolpixA	Phantom3 (Professional)
Flight time	15 min.	23 min.
GPS mode	GPS	GPS/GLONASS
Communication distance	1000 m	2000 m
FPV	×(additional parts) 💋	
Auto pilot	×(additional parts)	
Real time battery monitoring	×(additional parts) 🗾	O
Sensor size	23.6×15.6 mm	> 6.2×4.7 mm (1/2.3")
Pixel number	16.2 M (Coolpix A)	>> 12.4 M
Interval shot	1S- (Coolpix A)	58-
Gimbal	×	3-axis
Price	130,000 JPY	175,000 JPY

triangulation

Angle of two corners and distance between them ▶ definition of the triangle

http://artwelner.1000words.kodak.com/default.asp?item=220108

registrations

- camera calibration
- internal registration
- external registration (georeferencing)

<section-header>

Structure-from-Motion (SfM) SfM-MVS photogrammetry Multi-View Stereo (MVS) photogrammetry MVS: further photogrammetric process to generate SfM: structure from motion dense point cloud Developed in computer vision (Ullman, 1979; Szeliski, 2010) Reconstruction 3D structure from 2D images Sparce point cloud from image matching **MVS**: <u>multi-view stereo photogrammetry</u> Photogrammetry from already aligned 2D 19253025 be6ac56ea3 o.jr 30,602_7a1448d74a_0.jpg images 5h/6fd3a38 0 Dense point cloud (PMVS/CMVS) 9117103 4b8 ipg 168330.323 43_db3b1bd9d1_0.jpg Appropriate photo shooting for SfM-MVS revolution by UAS 17 : 1 小型無人航空機による革命 1.1.1. - much higher, wider & faster -(Agisoft, 2014)

UAS-based SfM-MVS	 Characteristics of SfM-MVS Various platforms UAV (UAS), balloon, kite pole, handheld undersea etc Low cost: <1,000 USD Multiscale: mm - km High resolution: >1M points/fac Textured images Orthorectified image 				
Software • SfM and MVS (free) - Bundler • basic SfM reconstruction - PMVS2 and CMVS • Patch-based Multi-view Stereo • clustering Views for Multi-view Stereo • dense point cloud reconstruction - other derivatives (Bundler + PMVS/CMVS) • VisualSFM • Bundler Photogrammetry Package • Python Photogrammetry Package • Python Photogrammetry Toolbox • commercial - Agisoft PhotoScan - PIX4D • web-based services - Microsoft Photosynth - Autodesk 123D Catch	 GCP positions Optional points can be bistribution of GCPs affectives Optional points can be carried accuracy 				

GNSS for SfM-MVS photogrammetry

- Aircraft positions
 - Built-in receiver for
 - many aircrafts
 - low in accuracy (1–10 m) ready to use
 - Optional antenna
 - potentially high
 - in accuracy (~10 cm) • either realtime or
 - either realtime or post-processed

GCP distribution and model accuracy

GNSS for SfM-MVS photogrammetry

- GCP positions
 - separately measured
 - Wide (unbiased) distribution for the appropriate model calibration

Lower accuracy apart from GCPs

case studies

tsunami boulders

study sites

⁽Goto et al. 2013 Geology)

introduction

• tsunami boulders – key features to reconstruct past tsunamis (e.g., Imamura et al., 2008, JGR; Goto, 2012, JSSJ)

62

- accurate volume measurements in the field have been a challenging issue (e.g., Spiske et al., 2008, EPSL; Watt et al., 2010, USGS-OFR, Gienko and Terry, 2014, ESPL)
- high-definition topographic measurements are applied to obtain the volume of tsunami boulders in southwestern Japan

How to measure the shape of boulders?

(Goto et al. 2013 Geology)

V=1658.6 m³

one of the largest tsunami boulders in 70 the world: "Obi-iwa" in Shiomji Is.

SfM by UAS and ground-based camera⁷²

UAS: DJI Phantom 3; ground-based camera: RICOH GR Ⅱ → entire 3D model generated

photographs taken

tsunami boulders targeted

volumes for the other boulders

- #01: 24.78 m³
- #02: 5.60 m³
- #03: 73.15 m³
- #04: >15.33 m³
- #05: 40.44 m³
- #06 (possible): >44.45 m³

concluding remarks

83

- successful volume measurements using 3D point clouds derived from either TLS or UAS-SfM
 - ca. x0.6 of manual measurements
 - TLS is good for accessible individual boulder, while UAS is also good enough for inaccessible remote boulders
- time consuming: manual filtering
- possibility: shape analysis
 - identification of source location

volume of rocky coast erosion

Repeated measurements of crosion in a small coastal island by TLS and **UAS-SfM photogrammetry**

natural processes of rocky coast erosion at Suzumejima Island

- a rare place: natural processes of coastal erosion out of the coastal protection
 - oceanic waves directly attacks the bedrock cliff
- rapidly shrinking for decades

86

changes of the island for 50 years

manual (bounding box) vs TLS volumes⁸²

methods: TLS – terrestrial laser scanners

TLS #1: TOPCON GLS-1500

- a medium-range scanner
- max. distance: 500 m
- max. distance: 300 million
 max. frequency: 30,000 pts/s
 range accuracy: 4 mm @150 m
- weight: 16 kg (body) + batteries

TLS #2: Trimble TX5

- a short-range scanner
- max. distance: 120 m - max. frequency: 900,000 pts/s
- range accuracy: 2 mm @25 m- weight: 5 kg

methods: UAS - unmanned aerial system

DJI Phantom 2 + NIKON COOLPIX A / Phantom 3 Professional/Advanced

post processing

- SfM-MVS photogrammetry by PhotoScan
- 500-1,000 photos for each time
- positioning accuracy 1: camera-mounted GNSS, >1 m positioning accuracy 2: GCP by PPK-GNSS (fix solution) (Trimble GeoXH), 13.4–14.9 mm (14.4 mm RMS)

archaeological applications

spatial data management

- GIS data processing
 - import as spatial data layers
 - orthorectified images
 - DEM (digital elevation model) to hillshade, slope, etc.
 - extraction of topographic profiles
 - export as TIFF or PDF images
- On-site geomorphological mapping
 - import data
 - tracing topographic features using iPad (GoodNotes app)
 - realtime matching of the map-derived features with field observation

UAS-based SfM-MVS photogrammetry

- acquisition of aerial photos by UAS
 - 100–300 photos per each flight (typically 15–20 min)
 - coverage area can be adjusted by the flight height and distance

- SfM-MVS processing
 - software: PhotoScan by Agisoft
 - tie point (sparse cloud)
 - dense cloud
 - triangular mesh
 - image texture
 - export orthophoto and DEM

Uchu-Kurbu and surroundings (Issyk-Kul)

- onstite data processing
- ensite data processing

ultra-rapid measurement for archaeology

aerial panorama of Sannai Maruyama Site, Aomori, northern Japan

topographic map of Sannai Maruyama Site

	A	В.	C	D	E	F	G	н		1
				GPST	lotitude(deg)	longitude(deg)	height(m)	iot2	lori2	112
	"Rename"	Date	Time .	UTC	GPS latitude	GPS longitude	GPS altitude			
				02-25-43.80	36 583084182	137 505540023	2500 1032			
				02-25-44.00	34 583084335	137 595849927	2500 4497	36 583050000	137 50 58 54/001	2564.000
	DE 0810 IPG	201710.04	11:25:26	02-25-44.00	36 583050000	137 595856000	2564.0000	36 583086335	117 525840027	2500 449
	00,00000	-	11.4.0.8.0	02-25-44-40	36 583084674	137 595849828	2501.1450		THE APPROPRIATE AT	
				02:25:44.60	36,583086840	137,595849774	2501.5679		1	15
				02-25-44.80	36.583087310	137.5958.49980	2501,9430	-	10	1
i				02:25:45.00	36.583088150	137.595850437	2502.1404	-	1	-
5				02:25:45.20	36.583089582	137.595851391	2502.2308			
6				02:25:45.40	36.583091783	137.595852858	2502.2717		12	0
7				02:25:45.60	36.583094614	137.595854822	2502.2909			
8				02:25:45.80	36.583098002	137.595857305	2502.3123		0	
9				02:25:46.00	36.583101362	137.595859802	2502.3198	2		1
0				02:25:46.40	36.583106702	137.595864215	2502.3983		2	2
1				02:25:46.60	36.583108524	137.595865875	2502.4302			
2				02:25:46.80	36.583110191	137.595867583	2502.4536			
3				02:25:47.00	36.583112033	137.595869486	2502.4423	36,583076000	137.595871000	2566.000
4	DJL0811.JPG	2017:10:04	11:25:29	02:25:47.00	36.583076000	137.595871000	2566.0000	36.583112033	137.595869486	2502.442
5				02:25:47,43	36.583116464	137.595874202	2502.4570			
ş				02:25:47.60	36.583119052	137.595877010	2502.4637	-	-	1
1				02:25:47.80	36.583121929	137.595880077	2502.4583			
ŝ				02:25:48.00	36.583125119	137.595683528	2502.4478	-	-	1
2				02:25:48.40	36.583132883	137.595891867	2502.4437	-	-	-
2				02:25:48.60	36.583137388	137.595896789	2502.4621	-	-	-
9				02:25:48.80	36.583141988	137.595901809	2502.4928	-	-	-
2				02:25:49.00	36.583146489	137.595906804	2502.5489	-	-	14
3				02:25:49.20	36.583150273	137.595911272	2502.7314	÷	-	2
2				02:25:49.40	36.583152842	137.595914680	2503.0494	-	-	8
2				02:25:49.60	36.583154243	137.595917532	2503.4192	-	-	14
16				02:25:49.80	36.583154762	137.595919245	2503.8092			
27		0.0000000000000000000000000000000000000	100000	02:25:50.00	36.583154709	137.595920382	2504,1745	36.583118000	137.595912000	2567.000
25	DJL0812.JPG	2017:10:04	11:25:32	02-25-50.00	36.583118000	137.595917000	2567.0000	36.583154709	137.595920382	2504.174
-					- n/ rank/ (h) h					

Test case: SfM – GCP RMS <1 cm

by the way,

higherresolution

