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* GNSS or Global Navigation Satellite System is an acronym
used to represent all navigation satellite systems such as

" itie | comiy | covrmge

GPS
GLONASS
Galileo

BeiDou (BDS)

‘ QZSS (Michibiki)

ENANEN

NavIC

KPS
(to be launched by 2034)

GPS and GLONASS have signals for civilian and military usage
+»+ Military signals are encrypted and not available for civilian use

USA
Russia
Europe

China
Japan

India

Korea

Center for Spatial Information Science
The University of Tokyo

GNSS Introduction

Global
Global
Global
Global
Regional

Regional

Regional

Galileo and BeiDou also have Restricted Signals
All civilian signals are freely available
Technical information for civilian signals is made public

X/

%* Necessary to develop a receiver
¢ It’s called ICD (Interface Control Document) or IS (Interface
Specification) Document
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Systems Related with Navigation

Augmentation Systems

Navigation Satellite Systems

GPS, GLONASS, Galileo, BeiDou, QZSS, NavIC SBAS or GBAS

Satellite Based Augmentation Systems
(SBAS)

S—

PVT Computation Engine
(Position, Velocity and Time)

A

PVT Solutions with
Enhanced Accuracy and Reliability

ICAO defines regulations related to the use of GNSS and SBAS for aviation
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Satellite Based Augmentation System (SBAS)

» Satellite Based Augmentation System (SBAS) are used to augment GNSS Data
* Provide Higher Accuracy and Integrity

* Correction data for satellite orbit errors, satellite clock errors, atmospheric correction
data and satellite health status are broadcasted from satellites

e SBAS Service Providers
« WAAS, USA (131,133,135,138)
 MSAS, Japan (129,137)
e EGNOS, Europe (120,121,123,124,126,136)
« BDSBAS, China (130,143,144)
e GAGAN, India (127,128,132)
e SDCM, Russia (125,140,141)
* KASS, Korea (134), Also Navigation System (KPS)
e AUS-NZ, Australia (122)
 NSAS, Nigeria, (147)
e ASAL, Algeria (148)

* PRN ID are given in the bracket

Slide : 4



a - - — N WY,
S is Center for Spatial Information Science e ﬁ =] j( ?
The University of Tokyo < ’ THE UNIVERSITY OF TOKYO

QZSS (Japanese version of GPS)
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QZSS 15t Satellite was Launched on 11t SEP 2010 and
Declared Operational on 1t NOV 2018

Declaration Ceremony of QZSS Operation

http://qzss.go.jp/events/ceremony_181105.html
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QZSS Constellation Plan

The University of Tokyo

4 sat. constellation 7 sat. constellation

Number of Satellites QZO +:1 QZO +¢:3, GEO e:1 QZ0O¢*:4, GEOe:2, QGO*:1
Purpose Research & Development | Operational Operational,
Complements GPS for Autonomous Positioning
positioning Capability with QZSS only
Government Authority JAXA Cabinet Office Cabinet Office
Operation 2010~ ( 10vyears) 2018~ (15 years) 2023~ (15 years)

24 hours / day 24 hours / day

Service Time / day (Japan) 8 hours / day

QZO: Quasi-zenith Orbit / GEO: Geosynchronous Orbit / QGO: Quasi-geostationary Orbit Source: MGA 2019, Mitsubishi
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] QzSs Constellation Plan

2. QZSS 75V Constellation Design %

_____________ T8N /;w

QZS 6 GEO)

. azs- 3(GEO) 7

- ”j QZS-7(QGEO)

. Center Longi.
. sV
j “- (deg.)

GEO(2-sats)

QZO(4-sats)

- QGEO(1-sat)

7-QZSS Ground Track
# Cabinet Office

National Space Policy Secretariat

QZS-3, 6 127E, 90.5E

QZS-1R,  148E(nom)
Q7S-2,4,5  139E(nom)

QzS-7 185E(nom)

¥QGEO: Quasi Geostationary Earth Orbit

(i>1deg, e=0.008)

8

This slide is taken from presentation slides of S. Kogure, Introduction to Michibiki and EWS, presented on 13t July 2021
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QZSS Signals and PRN ID: Current Status
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Launch Date

Launch Date

Source: https://qzss.go.jp/technical/satellites/index.html

PRN SVN | Satellite Orbit | Positioning Signals PRN SVN | Satellite Orbit | Positioning Signals
(UTC) (UTC)
193 L1C/A, L1C, L2C, L5 196 L1C/A, L1C, L2C, L5
183 JOo1 Qzs-1 2010/9/11 Qzo L1S 186 L1S
JOO5 QZS-1R 2021/10/26 Qzo
193 L6 186 L5S
194 L1C/A, L1C, L2C, L5 196 L6
184 L1S
J002 Qzs-2 2017/6/1 Qzo
196 L5S
194 L6
199 L1C/A, L1C, L2C, L5
189 L1S
197 L5S
JOO3 Qzs-3 2017/8/19 GEO
137 L1Sb
199 L6
- Sr/Sf
195 L1C/A, L1C, L2C, L5
185 L1S
Joo4 Qzs-4 2017/10/9 Qzo
200 L5S
195 L6

Slide : 9




The University of Tokyo

Csi

Center for Spatial Information Science

Characteristics of QZSS

H LUK

(; ’ THE UNIVERSITY OF TOKYO

Provides Orbit Data of other GNSS signals
Provides Augmentation Data for Sub-meter and Centimeter level position accuracy

QZSS signal is designed in such a way that it is interoperable with GPS
QZSS is visible near zenith; improves visibility & DOP in dense urban area

Improved positioning accuracy by multipath reduction

o’

Multipath effects are minimal on satellites

Provides Messaging System during Disasters

Interoperable with GPS

with high elevation angles

- EEE
GPS satellite = =1 T=]
-=- % ’
GPS satellite mmmm : ' / m
! GPS satellite \ : =
¢ 5 ; msm Yo il
: T R ! mam .
: “‘\ - “\ “ : . ’
’ e My %Y b ¢
3 Ho|E 2.3 o
] e N R AL T i
gy 5 i
s

Integrated usage of QZS
with GPS satellites
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* Disaster and Crisis Management
* Short Message broadcast during

Center for Spatial Information Science

Merits of QZSS

e Sub-Meter Level Augmentation
Service (SLAS)
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* High-Accuracy Positioning Services
* CLAS and MADOCA

Disaster
QZs QZS Z$
|
| mom GPS or QZS Q
=222 - o Mim
Government ministries < o Precise current

for disaster and crisis
management

Emergency
information

Control station

Satellite Report for Disaster and Crisis
Management (DC Report)

| .

{4

4

Correcting errors

Obtaining accurate
information
!

Sub-meter Level Augmentation Service

lonosphere

Accumulating
position data

Control station

GNSS-based
control station

position

Terminal (user)

http://qzss.go.jp/en/overview/services/sv04_pnt.html
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QZSS Signa
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s: High-Accuracy, Authentication and DC Report

Signal Slgnal Convergence
Availabilit
Name Purpose Accuracy vailability

CLAS High Accuracy

MADOCA High Accuracy L6E

Disaster Crisis
DC Report (DC) Report L1S
during disasters

2-Way
Q-Anpi communication S
during disasters

S Authentication L6

Signal L1, L5,

2—-5cm

10—-20cm

Not
Applicable

Not
Applicable

Not
Applicable

Few minutes

10-20
minutes

Not Applicable
(Available
every 3 sec)

Not Applicable

Not Applicable
(TTFA, TBA
See QZSS IS
Document)

Japan only

QZSS Visible
Area

QZSS Visible
Area

QZSS Visible
Area

QZSS Visible
Area

Convergence time can be reduced by
using local correction data

Also called Early Warning Message.
Basically for Japan.
Additional Message Types are
defined for other countries as well.

Authenticates QZSS, GPS, and
Galileo signals
LNAV, CNAV, CNAV-2, I/NAV, and
F/NAV Messages
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QZSS Launch Schedule

FY2023 FY2024 FY2025 FY2026

QZS-5 launch =§”
QZS-6 launch =I"

Qzs-7 launch =¥

Seven-satellite
constellation

Four-satellite constellation

The QZS-5 or the Sixth satellite was launched on 2" February 2025 successfully.

Source: https://qgzss.go.jp/en/overview/services/seven-satellite.html Slide : 13
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How does a GPS/GNSS Receiver Work?
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GPS L1C/A Signal Structure

 Carrier Signal
* |t defines the frequency of the signal

* For example:
e GPSL1is1575.42MHz, L2 is 1227.60MHz and L5 is 1176.45MHz

* PRN Code

* Necessary to modulate carrier signal
* Used to identify satellite ID in the signal
* Should have good auto-correlation and cross-correlation properties

* Navigation Data
* Includes satellite orbit related data (ephemeris and almanac data)
 Includes satellite clock related information (clock errors etc.)
 Includes satellite health information
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GPS L1C/A Signal Structure (Satellite Side)

Carrier Signal: 1575.42Mhz (L1)
Define signal frequency

|
x1, Clock W N TV T v
[ g ] (o) NN Ia

PRN Code, 1.023Mhz
Atomic Clock

Rb or Cs Clocks * Spread Spectrum Modulation
Identify each satellite

AN

L1 Band GPS Signal

»

>

x1/204600

. Provides Navigation Data, 50Hz

* Ephemeris (satellite orbit related data)
e Satellite clock related data
e Satellite health status
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|

Receiver
Clock
10.23Mhz

)

GPS L1C/A Receiver Si

gnal Processing

Replica Digital Signal

Compute doppler
Compute carrier phase

Carrier Signal

—» x1/10

)

PVT Output
(Position, Velocity, Time)

PRN Code, 1.023Mhz
PRN Code

—

Identify visible satellites
Compute pseudorange, code-phase

Position
. «—
Computation

~—

L1 Carrier, 1575.42Mhz + Doppler Frequency

(Wrrier + PRN Code)

H 5K
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GPS Antenna

RF Signal converted

to ngltéﬂ IF mgMal

> [

Front-End

IIIIIIIIIIIIIIIIIIIIIII _________ IIIIIIIIIIIII__I_I_.-II l

Signal Processing

l

Visible Satellites

Code-Phase Aqullfltlon
Doppler <«—— Tracking
Navigation Data < Navigation
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Generation of GPS L1C/A PRN Code

* Based on Gold Codes
* Use two 10 bit registers, G1 and G2
LFSR (Linear Feed Shift Register)
* Allinitial bits of registers are set at 1
e Taps 3 and 10 are used for G1 1 2 3
* Taps 2,3,6,8,9,10 are used for G2
* Two additional taps are selected
based on PRN ID. See GPS IS
document for the list of the taps. I
* Example, Taps 2 and 7 are used for
PRN ID 1.

10

G1 Polynomial: [3,10]

Output

7

8

9

Tap 2 & 6 for PRN ID 1

10

1

1

1

Refer video recording of webinar for details on PRN Code:

https://www.youtube.com/watch?v=elWbDBHTIJ61&t=2s

G2 Polynomial: [2,3,6,8,9,10]
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PRN Code Output #1
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. GPS L1C/A Singal, PRNID : 1
G1 Register:

B e e e e

N
\ N\
\

N

G2 "Begi s\te{\:

\\ M
1OD1 19D 1DPD

) GPS L1C/A Singal, PRNID : 1
G1 Register:

0 e e e 1

A\
\ N\,

|‘ "\1\
G2 Register;

N\

00D 1 19100
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Block Diagram of GPS Receiver

GPS Antenna f=1575.42Mhz Front-End
AGC
A fs = 16.368Mhz
\ 4 /
Pre-Amp L .
> LNA »  Down Converter »  A/D Converter > Acquisition > Tracking
A A A
f0 = 1554.0Mhz v
fc = 10Mhz :

\ 4

Oscillator Frequency Replica Signal avigation Data
———— >, ————————————————— - - -
(Clock) Generator Generator

\ 4

Position Output

fc, fO, fs are only example values.
These values differ depending upon the design of the front-end
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How does GPS Signal Look Like?

Time-domain Plot of GPS IF Signal Frequency-domain Plot of Histogram of GPS IF Signal .
€ .
s GPS IF Signal (Fourier Transform) 16000 Tracking Output (I and Q Channels)
4 10 | 14000 %
) T 5 0
2 i [ @ o £ E
g . | ; . %10000 Iy
Eo % & 8000 o
< g 10 | i s T
* } } } £ 6000 7
2 : : || : -15 | ‘ E i
ML LT | Plamat ik o B W0 00 T 00 M0 XD KO FN B0 M0 40
. i [ “ ’ ” ‘ 2000
) | '25 | and 0 Plot
s 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0 2 4 6 8 10 12 O-5 -4 -3 -2 -1 0 1 2 3 4 5 a 1 DD T T T T T T
Time (ms) Frequency (MHz) Bin Value ~
£ i
Acquisition of GPS L1C/A Signal with Low Noise Acquisition of GPS L1C/A Signal with Higher Noise % % L} ‘ UL
i ; ; ; : : : : '
| ] SRSETRT. U O B R T
1 ] E St |0
i i | | i l i I . .
o ‘ 00 00 300 300 00 F/O0 w00 00 |0 000 4000
g Scatter Plot of | and Q Channels, shows BPSK Modulation
0.6
. 3 2 50 S I
T N ] : : : ] | R T
g i g w
‘_é = 0t o
=1 c #
= c WY .
c BT :
00 3] : LA : : : ;
i A0 i I i | 4] i !
G000 000 4000 2000 0 2000 4000 HOOD OO
g o0, 000 | Channel Amplituge
oppler Frequency, Hz Code Phase
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GNSS: How does it work?
Determine the Distance using Radio Wave

m
Oms Assume that the Satellite Transmits Signal at Oms.
25ms If Receiver receives the same Signal after 67ms,
Distance = 67x300,000 = 20,100Km
50 Oms
ms
Satellite with a known position
transmits a regular time signal.
75ms 25ms

Distance = (Reception Time - Transmission time) X Speed of light

Speed of Light: 300,000 km/s

Slide : 22
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Time

Pseudorange (Code-Phase Measurement) - 1
Transmission

(;’ '?;UN:EESIXSTO%
Pseudorange = (Reception Time — Transmission time) x Speed of Light
ﬂ ﬂ H ﬂ ﬂﬂ ﬂ ﬂ H @, 2
Signal propagation at the speed of light ., 2 § s
: Yy, 2 o
t : /L%@m § W\
Reception iy g
About 20,000 km Time
Transit time
>

A GPS receiver measures the signal transmission time
from the code phase at signal reception time.
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GNSS: How does it work?
Principle of Satellite-based Navigation

Receiver generates its own GPS signal similar to the signal

coming from the satellite for each satellite

=> Its called Replica Signal

=>» The Replica Signal includes PRN Code and Carrier Signal

=>» This Replica Signal is moved forward and backward to
match with the incoming signal

A?

k_ _ L k)? _ vk)? _ k)2 ‘

P _J(XO )+ (o = I + (20 — 2K)" + ¢ UL AL AMUL AU Ue
CoYoZo L PN A LA AT

If k > 4, solve for X, y, z and errors including clock bias ¢ :(_)'At

Correlation between Incoming Signal and
Receiver Generated Signal
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Error sources

Satellite Orbit Error

V =4km/s
Satellite Clock Error

a

lonospheric Delay

50 — 200Km )
pd
)
7
. ///
Tropospheric Delay 7
10Km ,//
7/

Multipath

Thermal Noise

@ Receiver Clock Error
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Pseudorange equation

Ideal Case: po = c(ty — t5)
Real Case: p = po+ c(ét, — 8tg) + Iono + Tropo + Multipath + &

/ \ ™\ Thermal Noise
Receiver Clock Error Multipath Error
Satellite Clock Error Tropospheric Delay

lonospheric Delay

Simplified Equation: p =po+ c(dt, —bts) + ¢
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Pseudorange model

Satellite
pz\/(x - xs)z + (y - ys)z + (Z - Zs)z + C(5tr - 5ts) + & 4 (XS, Vs, Zs)
\ /
|
Po Do
Where:
X, Y, Z : Unknown receiver position
delta tr: Unknown receiver clock error ( )
epsilon : minimize this error by finding an optimal solution XY, Z
Receiver

»
»

) ) Range between satellite and receiver
» |In order to solve the above equations, we need “n” simultaneous

nonlinear equations from “n” pseudorange observations.
» We need at least 4 independent observations in order to
determine 4 unknown parameters, X, y, z and receiver clock error.
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PRN (Pseudo Random Noise) Code

* PRN Code is a sequence of randomly distributed zeros and ones that is one millisecond long.
* This random distribution follows a specific code generation pattern called Gold Code.
e There are 1023 zeros and ones in one millisecond.

* Each GPS satellite transmits a unique PRN Code.
* GPS receiver identifies satellites by its uniqgue PRN code or ID.

* |t continually repeats every millisecond
e The receiver can detect where the PRN code terminated or repeated.
* Aunique sequence of bits indicates start of a PRN code.

* It helps to measure signal transit time and compute pseudorange between the receiver and the satellite

* Its also called C/A (Coarse Acquisition) code in GPS

1ms /1023
—_> |€&—
Unique Sequence at the
start of the PRN code 01 0j1j0 O0]1 1 011j0 O
Ims
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Pseudorange (Code-Phase Measurement) - 2

1-sequence of PRN Code is 1023 bits, 1ms long. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |
This corresponds to 300Km S
1-bit or chip corresponds to 1/1023 ms.

This is about 293m (say 300m) in distance.

In the receiver, signals are resampled at certain frequency, say 10MHz.

This means every chip will be further divided into 10 smaller chips.

If it is possible to detect code phase at 1/10 of this sampled chip, then range
measurement accuracy would be about 300/10/10 = 3m.

However, there are various types of noises and this accuracy may not be possible.

Normally, GPS L1C/A guarantees an accuracy within 10m. 2m
Thus, using Code-Phase (PRN code) measurement, the accuracy will be limited to few

2m
meters level.
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Carrier-Phase Measurement — 1

Carrier-Phase measurement is done by counting the number of cycles coming from the satellite to the
receiver.

However, there are many complexities in measuring total number of cycles (N) from the satellite to the
receiver.
* Thisis called integer ambiguity

* This is due to the fact that all cycles are the same and there are no headers to tell the receiver when a new cycle has
arrived after number of cycles as in PRN code.

* A PRN code has a header to tell the receiver that this is the beginning of the PRN code that is 1023 chips long.
There are algorithms to solve this problem of ambiguity resolution.

* One complete cycle for GPS L1 band is 19cm long.
* Thus, if we can measure one wavelength, we can get 19cm accuracy
* |If we can measure 1/10% of a cycle, we get about 2cm accuracy.
* Thus, Carrier-Phase measurement can provide centimeter level accuracy.

A
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Code-Phase (PRN Code) vs. Carrier-Phase Measurement

‘\HHHHHHH‘HHHH\HHH ‘HHHHHHH\‘HHHH\HHH‘HHHHHHH\‘HHHHHHH\ ‘HHHHHHH\‘HHH\H\H\H‘HHHHHHH\‘HHHHHHH\ ‘H\HHHHHH‘H\HHHHHH‘HHHHHHH\‘HHHHHHH\ ‘H\HHHHHH‘
o

o o ) 38
g & 8 2 S
PRN Code 1

Header Data to indicate
beginning of the PRN Code

Carrier Signal

< <>

19cm

Code-Phase Measurement Carrier-Phase Measurement

Measuring distance between the satellite and the receiver with a tape
that has distance markings but distance values are not written.

We only know that each distance marker is 19cm apart. So, we need to
count at certain point the number of cycles separately that’s coming to
the receiver.

Measuring distance between the satellite and the receiver with a tape
that has distance markings as well as distance values written. So that we
can measure correct distance.

Only provide meter level accuracy Provides centimeter level accuracy
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ow to Improve GPS Accuracy?
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GPS Position Accuracy
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(; ’ THE UNIVERSITY OF TOKYO

How to achieve accuracy from few meters to few centimeters?

ORI= 35.666342230° 139.792210090° 59.7350m
AVE=E:-0.2368m N: 1.1001m U:-0.6957m
STD=E: 0.7813m N: 0.8869m U: 1.8977!
.RMS=E: 0.8164m N: 1.4131m U: 2.0212m 2D: 3.2639m

+ ‘v"
PR "‘}' >
...-'r..“'f.": K
... 50 cm grid ol

ORI= 35.666342230° 139.792210090° 59.7350m
AVE=E:-0.0160m N:-0.0395m U: 0.1039m
STD=E: 0.2253m N: 0.2461m U: 0.5594m

50 cm grid

50 cm

SPP (Single Point Position)

DGPS (Differential GPS)
Code-phase observation

ORI= 35.666342230° 139.792210090° 59.7350m
AVE=E:-0.0000m N: 0.0002m U: 0.0028m

STD=E: 0.0017m N: 0.0015m U: 0.0039m

RMS=E: 0.0017m N: 0.0016m U: 0.0048m 2D: 0.0046m

5 cm grid

RTK (Real Time Kinematic)
Carrier-phase observation
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Error sources

Satellite Orbit Error

V =4km/s
Satellite Clock Error

a

lonospheric Delay

50 — 200Km )
pd
)
7
. ///
Tropospheric Delay 7
10Km ,//
7/

Multipath

Thermal Noise

@ Receiver Clock Error
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Errors in GPS Observation (L1C/A Signal)

One-Sigma Error, m

Error Sources Comments
Total DGPS
Satellite Orbit 2.0 0.0
Common errors are removed
Satellite Clock 2.0 0.0
lonosphere Error 4.0 0.4
Common errors are reduced
Troposphere Error 0.7 0.2
Multipath 1.4 1.4
Receiver Circuits 0.5 0.5

If we can remove common errors, position accuracy can be increased.
Common errors are: Satellite Orbit Errors, Satellite Clock Errors and Atmospheric Errors (within few km)

Values in the Table are just for illustrative purpose, not the exact measured values.
Table Source : http://www.edu-observatory.org/gps/gps_accuracy.html#Multipath
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* Both Code-Phase and Carrier-Phase observations are necessary
e Carrier-phase provides centimeter level resolution

* Need to remove or minimize the following errors:

 Satellite Related Error
 Satellite orbit errors
 Satellite clock errors

e Space Related Errors
* lonospheric errors
* Tropospheric erros

e Receiver Related Errors
* Receiver clock error
e Receiver circuit related
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Observation Methods for High-Accuracy

* Basically three types of Observation

 DGPS (Differential GPS)
e Code-phase observation
e Requires Base-station (Reference Station)

* RTK (Real Time Kinematic)
* Code-phase and Carrier-Phase Observation
e Requires Base-station (Reference Station)

* PPP (Precise Point Positioning)
* Code-phase and Carrier-phase observation
* Does not require base-station
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Which Method: DGPS, SBAS, RTK, PPP?

10m
o> Im DGNSS _f/.J SBAS
e e
(48] e
© e
= e
3 e
(&)
<
10cm - :
o
A
-~ //
1cm i I I
10km 100km 1000km 10,000km
Baseline

http://www.novatel.com/an-introduction-to-gnss/chapter-5-resolving-errors/

Worldwide

H 5K
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How to Improve Accuracy?
Use Differential Correction (DGPS / RTK)

Q. -G
» [\

Recommended Base-length < 40Km

TS

Send Observation Data to Rover

) ()
f&/‘\ for Real-Time Position A\
Basg-statlon For RTK, both base and rover receivers need to ver
Antenna is installed at a use data from the same satellites User in the Field
Base-station Antenna position known-position (Either fixed or moving)
shall be known in advance Use RINEX data for post-processing
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QZSS

GPS

Data
AS Signal

Correction

—

Correction Data:

MADOCA:
Satellite Orbit Error of GPS and Other Satellites

W

Satellite Clock Error of GPS and Other Satellites ()

CLAS: I\

All of MDOCA plus the following: Jjf’ \i
Rover

lonospheric Correction Data

H 5K

(; ’ THE UNIVERSITY OF TOKYO

How to Improve Accuracy?
Use QZSS Service MADOCA or CLAS

Gps

Currently, MADOCA provides correction data for GPS, GLONASS and

QZsS.
It will be extended for Galileo in future.

» Base-Station is not required.
» The receiver should be able to receive MADOCA / CLAS signal in L6

band.
» MADOCA provides 10 — 20cm accuracy (Global)
» MADOCA correction data is also available online
» CLAS provides 2 — 5 cm accuracy (Japan Only)
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Data Formats:

Standard Formats: NMEA, RINEX, RTCM, BINEX
Proprietary Data Formats: UBX, SBF, JPS, Txx/Rxx etc.

References: https://www.nmea.org/
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National Marine Electronics Association (NMEA) Format

* NMEA is format to output measurement data from a sensor in a pre-
defined format in ASCI|

* In the case of GPS, It outputs GPS position, velocity, time and satellite
related data

* NMEA sentences (output) begins with a “Talker ID” and “Message
Description”
« Example: $GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
e “SGP” is Talker ID
* “GGA” is Message Description to indicate for Position Data

References : https://www.nmea.org/
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NMEA Data Format

GGA - Fix data which provide 3D location and accuracy data.

SGPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
Where: GGA Global Positioning System Fix Data
123519 Fix taken at 12:35:19 UTC
4807.038, N Latitude 48 deg 07.038' N
(do not read it as four thousand eight hundred seven...
Read it as 48 degrees, 07.038 minutes)
01131.000, E Longitude 11 deg 31.000' E

1 Fix quality:
0 =invalid,
1 = GPS fix (SPS),
2 = DGPS fix,
3 = PPS fix,
4 = Real Time Kinematic (RTK FIX)
5 = RTK Float
6 = estimated (dead reckoning) (2.3 feature)
7 = Manual input mode
8 = Simulation mode
08 Number of satellites being tracked
0.9 Horizontal dilution of position
545.4,M Altitude, Meters, above mean sea level
46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid
(empty field) time in seconds since last DGPS update (empty field) DGPS station ID number
*47 the checksum data, always begins with *
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RINEX Data Format

RINEX: Receiver Independent Exchange Format is a data exchange format for raw satellite data
among different types of receivers.

» Different types of receivers may output position and raw data in proprietary formats

e For post-processing of data using DGPS or RTK it is necessary to use data from different types of
receivers. A common data format is necessary for this purpose.

. Exam_ple?: How to post process data from Trimble, Novatel and Septenrtio receivers to compute a
position?
RINEX only provides Raw Data. It does not provide position output.
e User has to post-process RINEX data to compute position
e Raw data consists of Pseudorage, Carrierphase, Doppler, SNR

RINEX basically consists of two data types
o “**N” file for Satellite and Ephemeris Related data.
* Also called Navigation Data
e “**0” file for Signal Observation Data like Pseudorange, Carrier Phase, Doppler, SNR
* Also called Observation Data

The latest RINEX version is 3.04, 23 NOV 2018
* Note: Not all the software and receivers are yet compatible with the latest version
* Make sure which version of RINEX works the best with your software
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RINEX “N” File tfor GPS

o

32

24

0.
0.

2.11
cnvtToRINEX Z2.90.0

838ZD-08
8602D+05

NAVIGATION
convertToRINEX OFR

0.2235D-07
0.6554D+05

DATA

-0.59e0D-07

—0.931322574¢615D-05-0.3552713¢67880D—-14

18

17

0.
—0.

0.
.558529124300D+00 O
.389659088008D-09 0.
.240000000000D+01 O.
. 795120000000D+05 0.

[ T T s s T [ i Y o

[

05 01 00 00 0.0-0.
370000000000D+02-0.
3539025768354D-0¢ 0.
8€64000000000D+05-0.

05 01 00 00 0.0-0.

.100000000000D+02 O.
.404566526413D-05 0.
.864000000000D+05-0.
.545651423640D+00 0.
.128533542045D-09 0.
.240000000000D+01 O.
. 792180000000D+05 O.

400723423809D-03-0.
806Z250000000D+01 O.
1110649085e0D-02 0.
1823109626 77D-07 0.

.221156250000D+03-0.

100000000000D+01 O.
000000000000D+00 O.
400000000000D+01 O.
341213308275D-04-0.
787812500000D+02 0.
564297637902D-02 0.
1823109626 77D-07 0.
170506250000D+03 O.
100000000000D+01 O.
000000000000D+00 O.
400000000000D+01 O.

GPS5 (GPS)

05-Jul-17 03:38 UTC
-0.1192D-0¢
-0.1311D+0¢& —-0.4588D+06

405504 1947

RINEX VERSION / TYPE
PGM / RUN BY / DATE
COMMENT
ION ALPHA
ION BETA
DELTA-UTC:

LEAF SECONDS
END OF HEADER

11027€2325%0D-10 0.
4556840416154D-08-0.
826455652714D-05 0.
€75647076441D-01-0.
2650748%90978D+01-0.
194700000000D+04 O.
465661287308D-09 0.
000000000000D+00 0.
45474735088¢D-12 0.
4593405€1950D-08 0.
102464109¢55D-04 0.
10898¢€675687D+01 O.
450563049326D+00-0.
194700000000D+04 O.
279396772385D-08 0.
000000000000D+00 0.

000000000000D+00
192420920137D+01
515371503258D0+04
838190317154D-07
7963590315710D-08
000000000000D+00
370000000000D+02
000000000000D+00
000000000000D+00
167267055468D+01
51537022¢475D+04
484287738800D-07
§156411175684D-08
000000000000D+00
100000000000D+02
000000000000D+00

AOQ,R1,T,W

H 5K
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RINEX “O” File GPS, GLONASS, GALILEO, QZSS, SBAS
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2.11
cnvitToRINEX 2.90.0

EMBA

EMBA

DM
5536R50102

0.0000
1 1 0
g Cl C2
1.000
2017 5 1
2017 5 1
0
18
59
GOl 23351 23350
GDZ 22293 0

GO3 19633 19632
GO0S 25303 25302
GOe 24709 24708
GO7T 27766 27764

OBSERVATION DATA

convertToRINEX OPR

oT

TRIMBLE NETRO9
TNENOWN EXT

—-3955510.8%982 3357111.¢€7%1

0.0000

o T s v O T o |

Ll

23350
22293
19632
252595
24709
27764

Mixed (MIXED)

5.20
36597796.5455
0.0000
L2 L3

0.0000000

59.0000000
46694 0
22286 0
39259 0
50599 0
49411 0
53505 0

Pl

o T s v O T o |

05-Jul-17 03:38 UTC

P2

GES
GPS

23344
22286
19627
25257
24703
27741

RINEX VERSION / TYPE
PGM / RUN BY / DATE
COMMENT

MARKER NAME

MARKER NUMBER
OBSERVER / AGENCY
REC # / TYPE / VERS
ANT # / TYPE

APPROX POSITION XYZ
ANTENNA: DELTA H/E/N
WAVELENGTH FACT L1/2
# / TYPES OF OBSERV
INTERVAL

TIME OF FIRST OBS
TIME OF LAST OBS

RCV CLOCK OFFS APPL
LEAP SECONDS

¥ OF SATELLITES

PRN / # OF OBS
PEN / # OF OBS
PEN / # OF OBS
PREN / # OF OBS
PEN / # OF OBS
PRN / # OF OBS
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537 86400
540 5&700

17 5 1

21375379.

20991588.

23097788.

245394¢4.

218590081.

22760846.

20303284

23440741

213957¢0.

0

406

469

500

€48

000

398

.266

.258

742

9

0 86400
0 56700

CABEERETEER PHASE MEASUEEMENTS:

0.0000000

21375388.

209591594.

24539473,

22760855.

20303294

23440748.

21395769.

PHASE SHIFTS REMOVED

0 0
0 0

0
0

PEN / # OF OBS
PEN / # OF OBS
COMMENT

END

OF HEADEER

0 19G10G12G14G15G18G24G25G31G32R01R0ZR03

078 9

418 9

480 B8

313 9

227 9

211 B

145 9

21375388.

209915294,

23097753.

24539473,

21890086.

22760854.

2030325%4.

23440748.

213957€9.

414438

71548

865247

66046

53547

86347

01248

©2147

30548

R11R12R13528529537540

112328384.

1103115585.

121379711.

128955722.

115033147.

119609048.

106694510.

123181935.

112435502.

475

542

l4¢

954

870

681

219

134

496

9

3]

3]

&

6

87528¢640.

85957091.

94581624

1004849885.

89636240.

93201876.

83138€15.

959859¢1.

87612113.

180 S

870 9

.25147

893 B8

02147

319 S

317 9

100 B8

685 9
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BINEX: Binary Exchange Data Format

* BINEX is a data format to exchange GNSS raw data between the receivers for systems

* Defined by Record IDs
* Record 0x00 = 0 for site/monument/marker/reference point/setup metadata
e Record 0x01 =1 for GNSS navigation information
* Record 0x02 = 2 for generalized GNSS
* Record 0x03 = 3 for generalized ancillary site data
e Record 0x04 = 4 for receiver internal state data
e Record Ox05 =5 for processed results, e.g. PVT
e Record Ox7d = 125 for receiver internal state data prototyping
* Record Ox7e = 126 for ancillary site data prototyping
e Record Ox7f = 127 for GNSS data prototyping

* Records may have Sub-Record IDs
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RTCM : Radio Technical Commission for Maritime Services

* An internationally accepted data transmission standard for base-station data transmission
to a rover. The standards are defined and maintained by RTCM SC-104

* Provides GNSS Raw Data in compressed format
* Major standard for real-time data exchange

RTCM SC-104 (Special Committee 104)
* Defines data formats for Differential GPS, RTK

The Current Version is RTCM-3 (10403.3)

Refer https://www.rtcm.org/ for detail information and document
* A normal user does not need RTCM document.
* GNSS receivers with base-station capabilities will setup necessary messages for RTK
* If you are developing a system or application you may need it
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* MT 1- 100 : Experimental Messages
* MT 1001 -1230 : GNSS Messages
* MT 4001 - 4095 : Proprietary Messages
 Example: Observation Messages

* GPSL1 MT: 1001, 1002

« GPSL1/L2 MT: 1003, 1004

* GLONASS L1 MT: 1009, 1010

 GLONASS L1/L2 MT: 1011, 1012

e Station Coordinates MT: 1005,1006

* Antenna Description MT: 1007,1008

Example: MT1004
* Extended L1&L2 GPS RTK Observables
* This GPS message type is the most common observational message type, with L1/L2/SNR content.
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Geodetic Coordinate System

Semi Minor Axis

Ellipsoid Surface ~,

Semi Major Axis

Geodetic Longitude at P

Pole

Satellite

User at P (Latitude, Longitude, Height)

Normal Vector to
Ellipsoid at Point P

Geodetic Latitude at P

Equator

Semi Major Axis

o

H 5K
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ECEF (Earth Centered, Earth Fixed)

ECEF Coordinate System is expressed by assuming the center of the earth coordinate as (0, O, 0)

P(X,Y,2)

(0,0, 0)

Equator
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Coordinate Conversion from

ECEF to Geodetic and vice versa

ECEF (X, Y, Z) to

Geodetic Latitude, Longitude & Height to Geodetic Latitude, Longitude & Height

ECEF (X, Y, 2)

Z+e?b sin39)
p—e2acos36

<p=atan(

( ) cos ¢ cos A=atan2(y, x)

Y = (N+ h)cosgsini

h=—— o N(¢p)
Z= [N(1—e?) + h]sing
P =./x%+ y?
@ = Latitude
A = Longitude 0 = atan (@)
h = Height above Ellipsoid Pb
a

a = semi-major axis
b = semi-minor axis
enr2 =1-(b"2/an2)
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Geodetic Datum: Geometric Earth Model

Pole GPS uses WGS-84 Datum

But, topographic maps and many other maps use different
datum. Before using GPS data on these maps, its necessary
to convert GPS coordinates from WGS-84 to local
coordinate system and datum. Many GPS software have
this tool. Also, GPS receivers have built-in datum selection
capabilities.

Semi-Major Axis, a Check your receiver settings before using.

Ser&i-Minor Axis, b

Equator

WGS-84 Geodetic Datum Ellipsoidal Parameters
Semi-Minor Axis, b = 6356752.3142m
Semi-Major Axis, a =6378137.0m
Flattening, f = (a-b)/a

=1/298.257223563
First Eccentricity Square = e2 = 2f-fA2

= 0.00669437999013
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Ellipsoid, Geoid and Mean Sea Level (MSL)

CSi Center for Spatial Information Science C ’ ﬁ ;'.EL{. j( %

Mountain Peak

@ Ellipsoidal height (h)

Mean Sea Level (MSL) Height, H

Geoid Height (N)

h
l ©
\ / h SL Height, H

L l\

Land, Mountains, Valleys

MSL Height (H) = Ellipsoidal height (h) — Geoid height (N) Example at point (1) : h=1200m, N = -30m Example at point (2) : h=300m, N = +15m
Geoid Height is negative if its below Ellipsoidal height H=h—-N=1200-(-30)=1200 + 30 =1230m H=h-N=300-15=285m
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Height Data Output in u-blox Receiver, NMEA Sentence, SGNGGA Sentence

; Geoid Separation
SGNVTG,,T,,M,0.010,N,0.018,K,D*30 MSL (Altitude) \ Geoid Height

SGNGGA,012039.00,3554.18235,N,13956.35867,E,2,12,0.48,54.4,M,39.6,M,0.0,0000*5D

SGNGSA,A,3,03,04,06,09,17,19,22,28,194,195,02,,0.92,0.48,0.78,1
MMEA - GuEGA [Global Pozitioning System Fix D ata)
SGNGSA,A,3,11,12,04,24,19,31,33,,,,,,0.92,0.48,0.78,3*00

Farameter Walue Unit | Description
* § . mmzs.zss Univerzal ime coordinate
SGNGSA,A,3,30,01,03,14,08,28,33,04,02,07,10,13,0.92,0.48,0.78,4*08 { 3?53_0143023% dgr:m_mmmm t'atitude“ dinated
Morthigbadicator M M=Morth, 5=5outh
$GPGSV,5,1,17,01,18,076,,02,04,279,36,03,43,045,43,04,34,109,41,1*6C Lon 196368 dddmnronn Lorghde
. “rora =— Y = =Fixe =Floa =[lead Reckonin
$GPGSV,5,2,17,06,38,295,43,09,26,152,40,11,02,107,29,17,74,330,47,1*67 SN e ¥ Number i S voed forNavigaton ot P Epead Reckenng

HDOP 048 Harizontal Dilution of Precision

$GPGSV,5,3,17,19,53,320,45,22,22,048,39,28,36,213,43,41,18,249,39,1*6D alliE0 = T

Geod Sep. 386 m Geod Separation = AlHAE] - Al(MSL]
$GPGSV,5,4,17,50,46,201,40,193,52,172,43,194,16,193,40,195,85,163,46,1*5E | |2 I e Corctions

DGEMSS Ref Station nooo |0 of DGMSS Reference Station

SGPGSV,5,5,17,199,46,201,37,1*66
SGAGSV,2,1,07,04,25,175,40,11,28,299,37,12,65,007,43,19,50,105,40,7*72

The NMEA sentences in this figure are from u-blox receiver.
SGAGSV,2,2,07,24,27,245,41,31,09,198,36,33,33,082,42,7*43 NMEA format uses “Mean Sea Level” for height data (shown in blue texts).
Also it provides Geoid Height (Geoid Separation) value.

SGBGSV,4,1,15,01,48,172,43,02,19,248,36,03,39,225,43,04,44,148,42,1*7C GPS by default is Ellipsoidal height and this height is converted to Mean Sea Level height

using the geoid Height (shown in red texts) .
SGBGSV,4,2,15,06,00,185,29,07,39,214,41,08,53,305,43,10,44,248,42,1*7C This means, u-blox receiver uses a built-in database of Geoid Height.

SGBGSV,4,3,15,13,33,283,42,14,23,043,38,27,55,323,48,28,61,092,48,1*71 U-blox also outputs Ellipsoidal height in proprietary message SPUBX,00 (marked as altRef)

$GBGSV.4,4,15,30,05,306,36,32,17,206,42,33 48 055 46,1*4F SPUBX,00,time,lat,NS,long,EW,altRef,navStat,hAcc,vAcc,5S0G,COG,vVel,diffAge, HDOP,VDO
Py mmm e e P PTDOP,numSvs,reserved,DR,*cs<CR><LF>
SGNGLL,3554.18235,N,13956.35867,E,012039.00,A,D*76 altRef > Altitude above user datum ellipsoid
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Points to Be Careful in GPS Survey

* Datum
* Which Datum is used for GPS Survey?
* By default, GPS uses WGS-84

* But, your Map may be using different datum like Everest

* Make Sure that Your Map and Your Coordinates from the GPS are in the same Datum, if
not, datum conversion is necessary

* You can get necessary transformation parameters from your country’s survey
department

* Height
* Which Height is used?
* By default GPS uses Ellipsoidal Height

e But, your Map may be using Mean Sea Level (MSL or Topographic) Height
* You need to convert from Ellipsoidal Height into MSL Height

* Use Ellipsoidal and Geoid height Difference Data for your survey region
* You can get it from your country’s survey office
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GNSS Errors
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Background Information: Accuracy vs. Precision

* Accuracy
e Capable of providing a correct measurement
* Measurement is compared with true value
» Affected by systematic error

* Precision
e Capable of providing repeatable and reliable measurement
 Statistical analysis of measurement provides the precision
* Measure of random error
e Systematic error has no effect

LA A A J

Neither Precise nor Accurate Precise but Not Accurate  Accurate but Not Precise?  Precise and Accurate
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GNSS Measurement Errors

Root Mean Square RMS The square root of the average of the squared errors
Twice Distance RMS 2D RMS Twice the RMS of the horizontal errors
: A circle's radius, centered at the true antenna position,

Circular Error Probable CEP .. . : >

containing 50% of the points in the horizontal scatter plot
Horizontal 95% ROS A circle's radius, centered at the true antenna position,
Accuracy containing 95% of the points in the horizontal scatter plot

A sphere’s radius centered at the true antenna position,
Spherical Error Probable SEP containing 50% of the points in the three dimensional scatter

plot

Source: GPS Accuracy: Lies, Damn Lies, and Statistics, GPS World, JAN 1998
https://www.gpsworld.com/gps-accuracy-lies-damn-lies-and-statistics/
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Commonly Used GNSS Performance Measurements

* TTFF

* True Time to First Fix
 Parameter: Cold Start, Warm Start, Hot Start

e Standard Accuracy
e Accuracy attainable without any correction techniques

* DGPS Accuracy

e Accuracy attainable by differential correction data
e Code-phase correction

* RTK Accuracy
e Accuracy attainable by differential correction data
* Use both Code-Phase and Carrier Phase correction
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TTFF and Typical Example Values

* TTFF

e Cold Start : < 36 seconds

* Time required to output first position data since the receiver power is on
* No reference data like time or almanac are available

e Warm Start : < 6 seconds

* Time required to output first position data since the receiver power is on
with the latest satellite almanac data in the receiver’s memory

* Time and almanac related reference data are already known

e Hot Start : < 1 second
* Receiver has already output position data

* Time to reacquire an already tracked satellite due to temporary blockage
by buildings or trees
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Performance Measurement of RTK Accuracy

e Afix error and a variable error with respect to base-length is given

e Suchas:xcm+yppm

 Example: 2cm + 1ppm

* There is a fix error of 2cm plus 1ppm error due to base-length between the Base and Rover

1ppm = 1 parts per million
 =» 1cm of error in 1 million centimeter distance between the Base and the Rover
e =» 1cm of error in 1000000 centimeter distance between the Base and the Rover
* =» 1cm of error in 10000 meter distance between the Base and the Rover
 =» 1cm of error in 10 kilometer distance between the Base and the Rover
* =» 1cm of error for every 10Km of distance between the Base and the Rover
e =» 4cm of error for 40Km of distance between the Base and the Rover
* Thus the total error is : 2cm + 4cm due to 40Km of base length

* The longer the base-length, the larger the error
* Do not assume that this error is linear
* And it may not be valid for longer base-lines
 Normally the recommended base-length for RTK for a Geodetic Receiver is 40Km
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GPS Skyplots: Tokyo, Jakarta and Maputo

Tokyo Base-Station Jakarta Base-Station Maputo Base-Station
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GNSS Signal Visibility: Skyplot
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