

Latest QZSS status

February 14, 2024

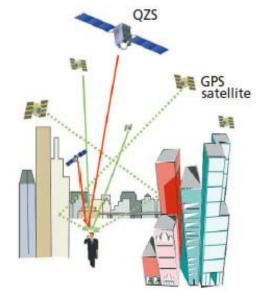
Satoshi Kogure

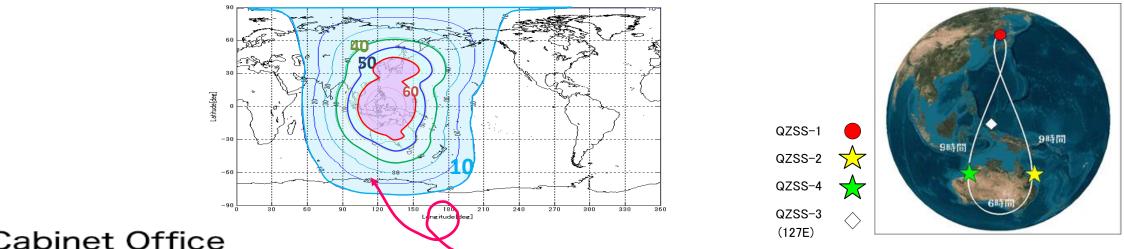
Executive Advisor for Space Policy Committee, Cabinet Office, Government of Japan

QZSS Overview -Current Services-

Functional Capabilities:

□ GPS Complementary (Ranging signals)


□ GNSS Augmentation (Error corrections)


Messaging Service (Disaster relief, management)

• **Coverage:** Asia and Pacific region

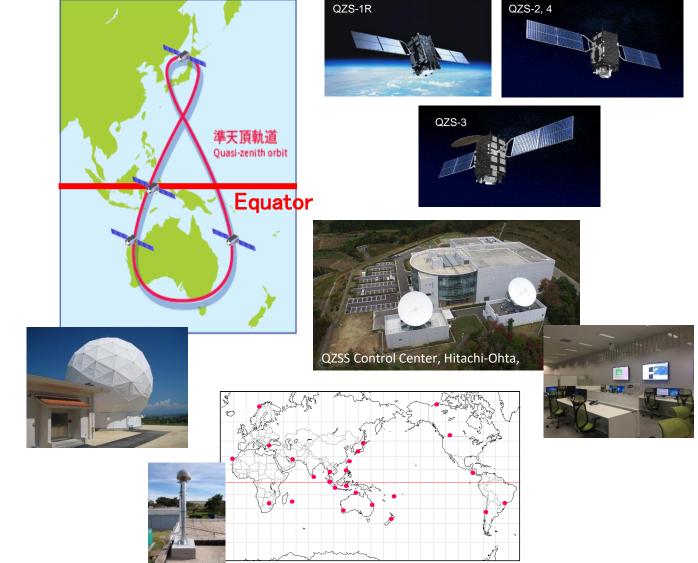
□ Augmentation service covers only Japan

Experimental service provides error corrections in Asia Pacific region

National Space Policy Secretariat

One or more QZSS SVs over 10 degrees elevation angle

QZSS Overview -System-

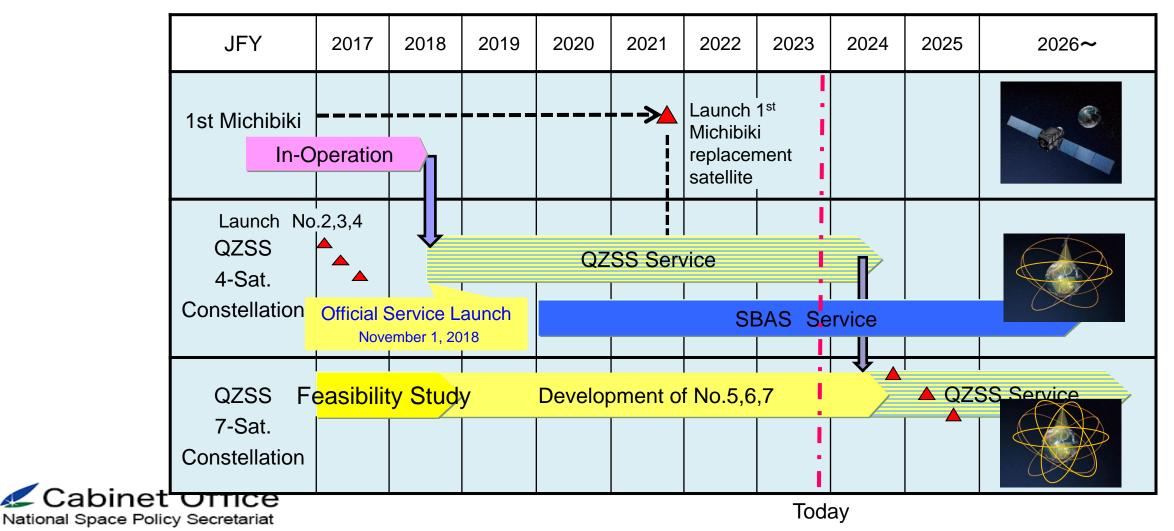

Constellation:

1 GEO Satellite, 127E3 QZO Satellite (IGSO)

Ground System

□ 2 Master Control Stations

- Hitachi-Ota and Kobe
- □7 Satellite TTC Stations
 - Located south-western islands
- Over 30 Monitor Stations around the world



QZSS Development Plan

- Development of 3 additional satellites are on-going.
- The launches for them are scheduled for JFY2024 to 2025 on the formal plan.

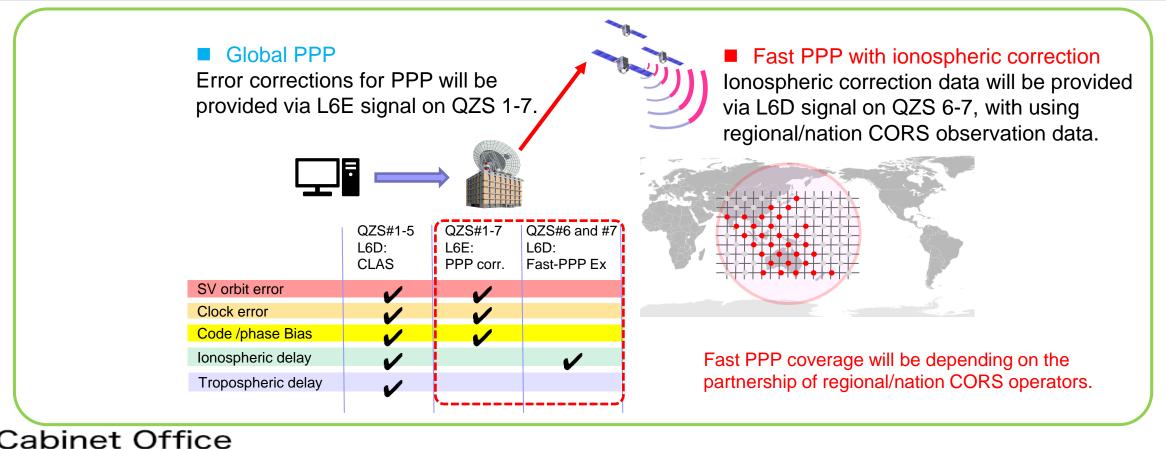
7 Satellites Constellation of QZSS

Additional services start around 2024-2025

PNT service

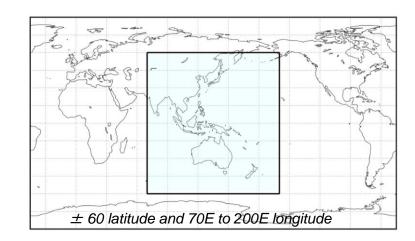
- Users obtain PVT solution with using ranging signals provided by 7 SV constellations.
- Target accuracy is 1-meter horizontal error (95 percentile).
- Navigation Message Authentication(NMA) will be added to LNAV, CNAV, CNAV2 messages.

MADOCA-PPP service


- Covering major part of eastern hemisphere and providing PPP error corrections on L6 signal.
- Early/Emergency Warning Satellite Service (EWSS)
 - Four out of seven SVs will transmit 122 bits common EWS message on L1S signal.
 - Common EWS message is developed under collaboration with EC, Cabinet office, and ISRO under ICG framework and <u>CAMF(Common Alert Message Format)</u> has been published since <u>January 2024 by EC.</u>
 - Additional bits on QZSS EWS can be available for regional unique information sharing.

Practical PPP correction service in Asia Pacific region

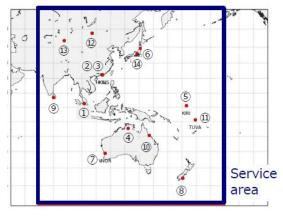
- Test live signal of MADOCA-PPP is now available for Asia-Pacific region.
- Operational service will start no later than 2024.
- For reduction of initial convergence period in PPP, QZSS will provide the ionospheric correction data for some areas from 2024 as an experiment for future practical operation.



Practical PPP correction service in Asia Pacific region

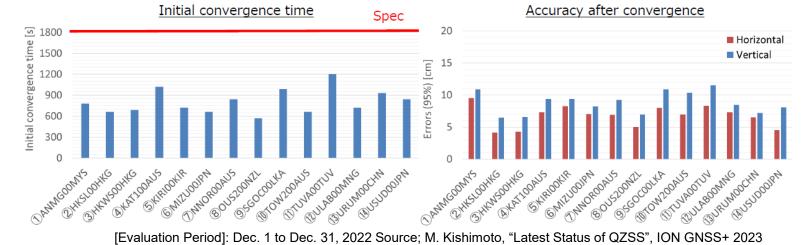
PS-QZSS 003 was published on Mar. 17, 2022

- Adding MADOCA-PPP service to the existing services
 - Defines augmented constellations and signals
 - \square QZSS, GPS, Galileo and Glonass
 - Service area
 - $\hfill\square$ At least one QZS is visible more than 10 degrees elevation angle
 - □ Error corrections for more than 20 satellites over 10 degrees elevation angle are available in the service area.
 - Minimum performance level
 - Positioning Accuracy
 - Horizontal: 30cm (95%)
 - Vertical: 50cm (95%)
 - Convergence time
 - 1800 sec
 - 600 sec (target value for initial convergence time with ionospheric correction)



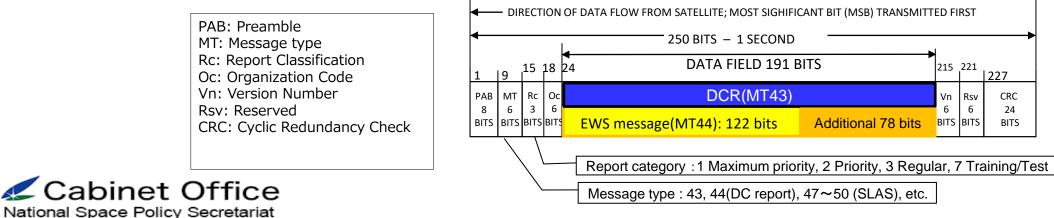
https://qzss.go.jp/en/technical/ps-is-qzss/ps-is-qzss.html

Practical PPP correction service in Asia Pacific region



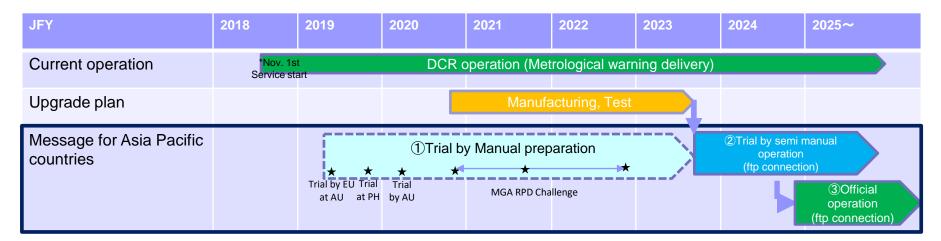
- IS-QZSS-MDC 002 was published in November, 2023
 - Defining L6E channel properties and data format
 - □ RF specifications are same as CLAS(L6D)
 - Same receiver H/W can be available for tracking and decoding MADOCA-PPP error corrections
 - Data format is changed from the existing experimental signal on L6E and Compact-SSR format, same as CLAS, is adopted.
 - Updated error corrections will be provided from the beginning of October 2022.
 - □ The definition and data format for wide area ionospheric corrections has been added.
- Test evaluation result, Service Performance Report MADOCA-PPP, was also posted QZSS web site.

[Evaluation Period]: Dec. 1 to Dec. 31,



https://qzss.go.jp/en/technical/ps-is-qzss/ps-is-qzss.html

Overview of QZSS EWSS


- "Satellite Report for Disaster and Crisis Management" service (DCReport) is being provided with using L1S signal.
 - □ Same RF property as L1 SBAS, 1575.42MHz, BPSK(1), 500sps(250bps)
 - □ 1 of 4 slots (every 4seconds) sharing with SLAS service (2 of 4 slots in 4 seconds)
 - □ MT43 is defined the information issued by Japan Meteorological Agency such as the earthquake, typhoon, tsunami, volcanic eruption and so on, in IS-QZSS-DCR-010.
 - □ MT44 will be extended for EWS.
 - Common EWS message with 122 bits and additional 78 bits
 - Common EWS includes disaster type, target area, and alert, guidance information.
 - Target area for an alert msg. is defined by ellipse and its radius is adjustable.
 - MT44 interface for oversea users is under development.

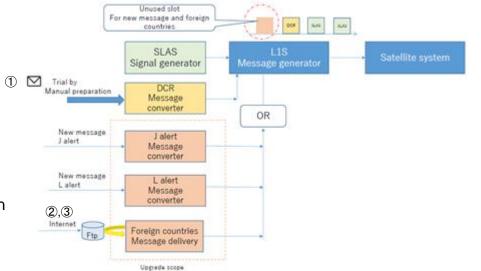
QZSS EWSS for Asia Pacific region

Ground control segment upgrade is on-going, official operation will start from JFY2025.

- Step by step approach to practical operation
- ① Trial by Manual preparation

Message is received by e-mail and prepared by manual.

2 Trial by semi manual operation

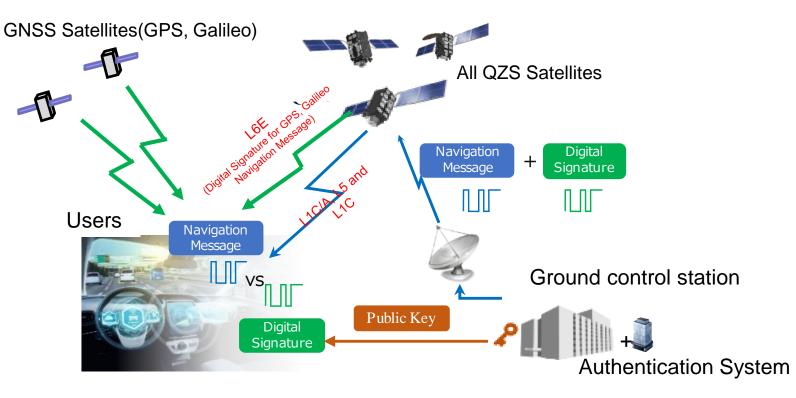

Message is received by ftp and prepared by system. The message will be broadcasted within 2mins(e.g.).

3 Official operation

Cabinet Office

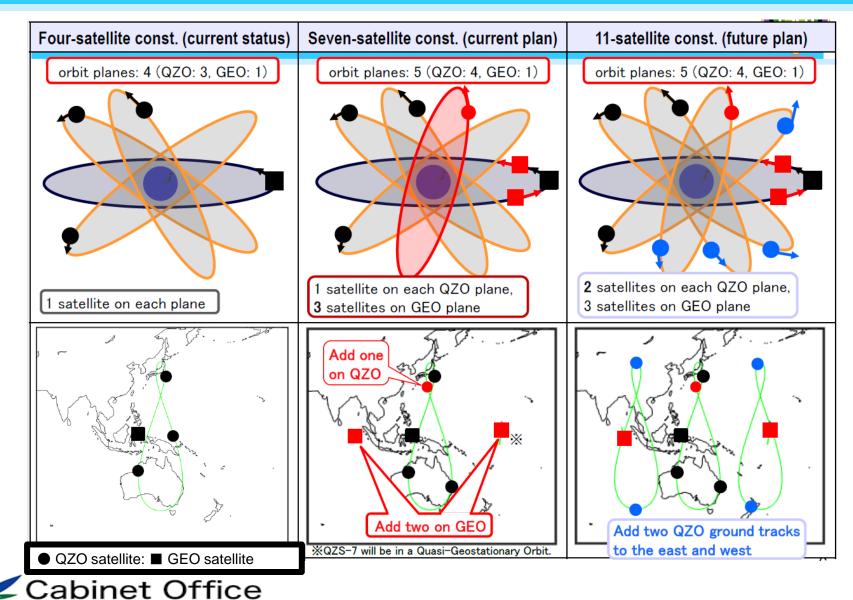
National Space Policy Secretariat

After modifications extracted through the above Trial operation, official operation will start form JFY 2025. (with ftp I/F and within 2 min alert broadcasting from user's alert issue.


QZSS QZNMA Service

QZSS navigation message authentication (QZNMA) service will be lunched in 2024. Navigation messages in the following signals are authenticated with using ECDSA (P-256).

- QZSS signals (L1C/A, L1C, L5) are protected by self-authentication
- > GNSS signal (GPS: L1C/A, L1C, L5, Galileo:E1b, E5a) are protected by cross-authentication (L6E)
- The Interface Specification (IS-QZSS-SAS-001)(draft-002) is now available on our website.


Test Transmission started from the end of July 2023.

QZSS Constellation Expansion Plan

National Space Policy Secretariat

Three Advantage of 11SV constellation

- 1. Higher and more stable accuracy
- 2. More resilient and robust system
- 3. Wider service coverage

Asia-Oceania Collaborations with QZSS

13

Vietnam for MADOCA-PPP

Signed the LoI with VNSC to conduct demonstration of MADOCA-PPP.

Planning for seminars and promotions with local disaster prevention organization (MDMR, etc) in JFY2023

Nepal for EWSS

Planning for seminars and promotions with local organizations (MOHA, etc) in JFY2023

Thailand for EWSS/MADOCA-PPP

EWSS) Performed demonstration with GISTDA for forest fires in JFY2022. Planning second demonstration in March 2024. MADOCA-PPP) Under evaluating positioning performance with GISTDA.

Cambodia for EWSS

Planning for seminars and promotions with local organization (NCMD) in JFY2023

Malaysia for EWSS

National Space Policy Secretariat

Performed of seminars and promotions with local disaster prevention organization (NADMA, etc) in August,

Philippines for EWSS/MADOCA-PPP

EWSS) Planning for seminars and promotions with local disaster prevention organization (OCD) in JFY2023 MADOCA-PPP) Signed the LoI with NAMRIA to conduct demonstration of MADOCA-PPP.

Indonesia for EWSS/MADOCA

EWSS) Planning for seminars and promotions with local disaster prevention organization (BNPB, University of Indonesia) in JFY2023 MADOCA-PPP) Signed the LoI with BIG and BRIN to conduct demonstration and seminars of MADOCA-PPP.

Fiji for EWSS

Performed demonstration with NDMO to evacuate residents and tourists from Tsunami in JFY2022. Planning second demonstration in JFY2023.

Australia for EWSS

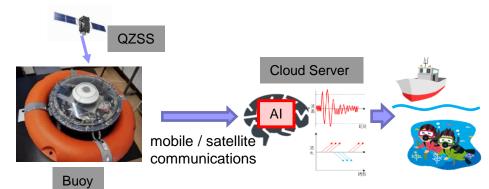
Performed demonstration with GA for forest fires in JFY2022. Planning second demonstration by mainly university in JFY2023.

QZSS Applications

14

Autonomous driving

QZSS compatible antenna (Built in shark fin)



(©Honda R&D Co., Ltd.)

(© Nissan Motor Co., Ltd.)

Buoy for real-time ocean tide monitoring

GNSS Receiver and Chipset

* Additional android software for MADOCA-PPP

** to be available in the end of March 2023

Wearable terminals

display the distance to the green display the EWS message

Cabinet Office

Drones

QZSS compatible

Agricultural Drone

Logistics drone

QZSS Applications for Smart Cities

- Planning and early construction phase
 - Enough infrastructure has not established the area
 - MADOCA-PPP support effective drone survey, construction machine control and etc....
- Autonomous Mobility, Logistics
 - □ GNSS is most important key technology for precise positioning and timing, QZSS can provide error corrections for autonomous mobility and logistics.
 - □ QZNMA can provide secure position and timing against emerging spoofing threats.

Precise Time Synchronization

- Sub nano-second time synchronization for finance applications, traffic control system and so on.
- Using phased array antenna tracking a QZSS satellite can strengthen anti-jamming capability.

Summary

- QZSS is Japanese regional navigation satellite system to improve not only GNSS availability but also accuracy and reliability
 - 4 satellite constellation: Three IGSO and one GEO satellites
- Future expansion to 7 satellite constellation
 - Three additional satellites will be launched in JFY2024 to JFY2025. QZSS will provide independent PNT capability for more reliable applications.
- 11 SV constellations will realize more stable, robust performance and wider service coverage.
- New services
 - QZNMA will provide message authentication capability to users, applying ECDSA (P-256).
 - MADOCA-PPP will become operational service no later than 2024 and also EWSS covering Asia Pacific region.
- Commercial devices and applications
 - Emerging new applications such as autonomous driving, drone operation with some commercial devices.
 - According to applications for the smart cities, QZMNA and time sync are most likely expected to strengthen resilience.

Thank you for your attention! For more information, please visit our web site <u>https://qzss.go.jp/en/</u>

5

Question? 📩 kogure.satoshi@jaxa.jp

Acknowledgement:

QZSS strategic office, CAO, provided slides for this presentation. Many thanks to their contributions and supports.