

U.S. GPS Program Update and International Activities to Protect GNSS Spectrum

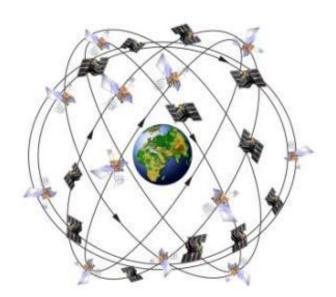
CSIS/UTokyo/ICG GNSS Training Programme and Workshop

Office of Space Affairs U.S. Department of State

14 February 2024

Agenda

Program Update


PNT Policy

• GNSS Spectrum Protection, IDM and the ICG

GPS Constellation Status

38 Satellites • 31 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age (yrs)	Oldest
GPS IIR	7 (3*)	22.1	26.5
GPS IIR-M	7 (1*)	16.3	18.3
GPS IIF	11 (1*)	10.0	13.7
GPS III	6 (1*)	3.3	5.1

*Not set healthy

As of 01 Feb 2024

GPS Signal in Space (SIS) Performance

From 31 Dec 22 to 31 Dec 23

Average URE*	Best Day URE	Worst Day URE
48.7 cm	33.4 cm (22 Jun 23)	165.7 cm (25 Jan 23)

*All User Range Errors (UREs) are Root Mean Square values

GPS Modernization

Space Segment

SV families provide L-Band broadcast to User Segment

GPS IIA/IIR

- Basic GPS
- Nuclear Detonation Detection System (NDS)

GPS IIR-M

- 2nd Civil Signal (L2C)
- New Military Signal
- Increased Anti-Jam Power

GPS IIF

- 3rd Civil Signal (L5)
- Longer Life
- Better Clocks

GPS III (SV01-10)

- Accuracy & Power
- Increased Anti-Jam Power
- Inherent Signal Integrity
- 4th Civil Signal (L1C)
- Longer Life
- Better Clocks

GPS IIIF (SV11-32)

- Unified S-Band Telemetry, Tracking & Commanding
- Search & Rescue (SAR) Payload
- Laser Retroreflector Array
- Redesigned NDS Payload

Control Segment

Legacy (OCS)

- Mainframe System
- Command & Control
- Signal Monitoring

Architecture Evolution Plan (AEP)

- Distributed Architecture
- Increased Signal Monitoring Coverage
- Security
- Accuracy

OCX Block 0

 GPS III Launch & Checkout System

GPS III Contingency Ops (COps)

• GPS III Mission on AEP

OCX Block 1/2

- Fly Constellation & GPS III
- Begin New Signal Control

TT&C of Space Segment assets & distribution of data to user interfaces

 Upgraded Information Assurance

OCX Block 2+

- Control all signals
- Capability On-Ramps
- GPS IIIF Evolution

User Segment

Continued support to an ever-growing number of applications

- Annual Public Interface Control Working Group (ICWG)
- Standard Positioning Service (SPS) Performance Standard Updates
- Precise Positioning Service (PPS) Enhancements
- Sustained commitment to transparency
- · Visit GPS.gov for more info

Applies Space and Control Segment data for PNT applications

Modernized Civil Signals

- L2C (Various commercial applications)
- L5 (Safety-of-life, frequency band protected)
- L1C (Multi-GNSS interoperability)

GPS III

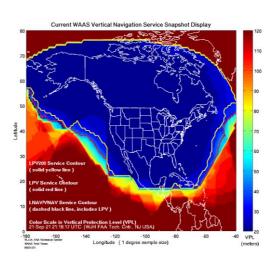
- SVo1 Set healthy and available for use on 13 Jan 20
- SVo2 Set healthy and available for use on 1 Apr 20
- SVo3Set healthy and available for use on 1 Oct 20
- SV04 Set healthy and available for use on 2 Dec 20
- SVo5 Set healthy and available for use on 25 May 22
- SV06 Set healthy and available for use on 16 Feb 23

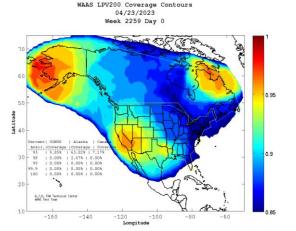
GPS III SVs in storage

- SV07 in storage –AFL 20 May 21; TLD NET June 2024
- SVo8 in storage –AFL 10 Jun 21; TLD FY25
- SVo9 in storage –AFL 23 Aug 22; TLD FY25
- SV10 in Storage –AFL 8 Dec 22; TLD FY26
- -AFL -Available For Launch; NET -No Earlier Than; TLD
- -Target Launch Date

Next Generation Operational Control System (OCX)

- Next-generation command, control and cyber-defense for GPS
 - Enhanced command and control capability
 - Modernized architecture
 - Robust information assurance and cyber security
- Incremental Development
 - OCX Block o: Launch and Checkout System (LCS) for GPS III
 - OCX Blocks 1 and 2: Controls and manages all GPS spacecraft and signals
 - OCX 3F: Adds support for GPS IIIF vehicle and new capabilities
- Current Status
 - LCS successfully supported Launch and Checkout for GPS III SVo1-SVo6
 - OCX Block 1 completed factory integration and in Golden Dry Run for factory qualification
 - Delivery/DD250 Mid-2024; Ready for Transition to Ops (RTO) Early 2025





Wide Area Augmentation System (WAAS)

- WAAS provides high availability service to aviation users in North America
- Developing Dual Frequency WAAS
 - Will enable high availability of WAAS vertical service during ionospheric disturbances
- GEO Sustainability
 - Currently maintaining 3 GEO constellation
- WAAS Modernization Efforts
 - Dual Frequency Multi-Constellation (DFMC)
 - Advanced Receiver Integrity Monitoring (ARAIM)
 - Authentication/Resiliency
 - Transition to IP based communications network
 - Security Upgrades

WAAS Procedures and Avionics Equipage

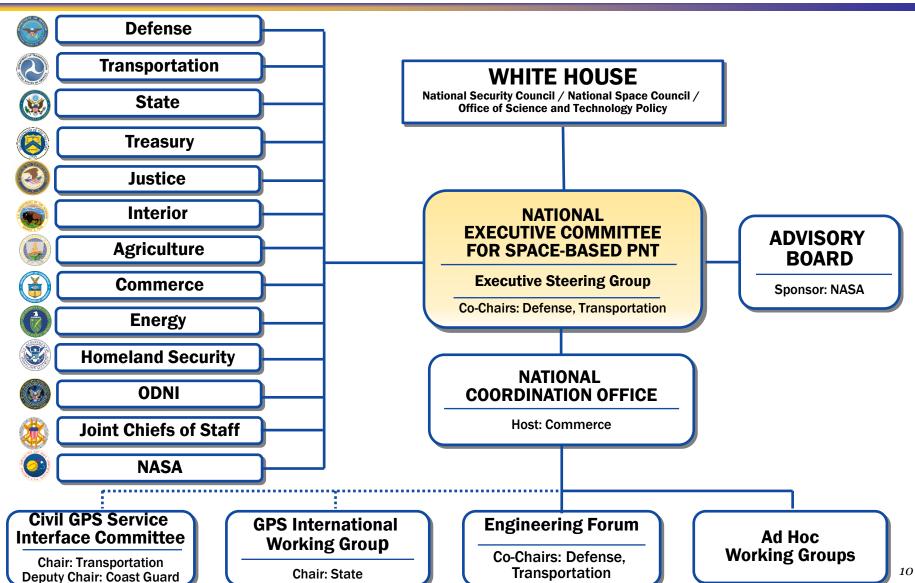
• Procedures:

- 4,127 Localizer Performance with Vertical Guidance (LPV) approaches in the NAS
- 1,116 provide CAT I (200') equivalent performance

Equipage

- o General Aviation:
 - Over 131,000 equipped aircraft in the NAS
 - All classes of aircraft are served in all phases of flight
- Airlines
 - Airline integration through MMRs
 - Main aircraft with SBAS capability in the US -A220
- Enabling technology for NextGen Programs
 - Automatic Dependent Surveillance Broadcast (ADS-B)
 - Performance Based Navigation (PBN)

U.S. Space-based PNT Policy (2020 NSP & SPD-7)


Maintain U.S. leadership in the service provision, and responsible use of GNSS, including GPS and foreign systems

- Ensure **compatibility** ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
- Encourage **interoperability** ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service
- Promote transparency in civil service provision and enable market access for U.S. industry
- Promote and support the **responsible use of GPS** as the pre-eminent space-based PNT service
- Foreign space-based PNT services may be used to complement civil GPS service
 - Receiver manufacturers should continue to improve security, integrity, and resilience in the face of growing cyber threats
- Encourage foreign development of PNT services and systems based on GPS
- Support international activities to **detect**, **mitigate**, **and increase resilience** to harmful disruption or manipulation of GPS

National Space-Based PNT **Organizations**

Global Perspective

- Global Constellations
 - GPS (24+3)
 - GLONASS (24+)
 - GALILEO (24+3)
 - BDS/BEIDOU (27+3 IGSO + 5 GEO)

- Regional Constellations
 - QZSS (4+3)
 - IRNSS/NAVIC (7)
 - Korea KPS (7)
- Satellite-Based Augmentations
 - WAAS (3)
 - MSAS (2)
 - EGNOS (3)
 - GAGAN (3)
 - SDCM (3)
 - BDSBAS (3)
 - KASS Korea (2)
 - SPAN Australia/NZ (2),

International Committee on GNSS (ICG)

- Pursuing a Global Navigation Satellite System-of-Systems to provide civil GNSS services that benefit users worldwide
 - Promote the use of GNSS and its integration into infrastructures, particularly in developing countries
 - Encourage compatibility and interoperability among global and regional systems
- U.S. priorities include spectrum protection, system interoperability and information dissemination
- 17th Meeting held in Madrid, Spain in October 2023
- New Zealand will host the 18th Meeting in October 2024

What is Spectrum Protection?

- "Protection" is about keeping the spectrum 'clean'
- Clean spectrum means keeping the frequencies near to GNSS free from licenced, unlicensed and illegal transmissions that interfere with GNSS reception, e.g.
 - GNSS jammers
 - Uncontrolled GNSS repeater installations
 - Spurious emissions from radio equipment, e.g. motors
 - Other radio services, e.g. TV broadcasts
 - Malfunctioning electronic equipment

Clean Spectrum

- Clean spectrum for GNSS minimizes signal errors and maximizes the performance for GNSS receivers
 - Better and more reliable positioning and timing
 - Faster time to first fix
 - Better tracking performance in challenging environments
- Keeping spectrum clean requires technical means to detect when such interference occurs
- National regulators usually have the capacity to detect strong interferers
 - Direction finding equipment or geolocation techniques
 - The ITU can also help coordinate such activities when cross border interference occurs

GNSS Interference

- Strong interferers are relatively easy to detect
- However, if weak interferers are far away from the detectors, they will not be seen
- The weak interfering signals are still stronger than GNSS and will have widespread impact on GNSS reception
- To find weak interferers (e.g. 'personal' GNSS jammers) requires more specialised local equipment or a dense detector network
- The ICG has been considering this challenge

ICG and GNSS Spectrum Protection

- ITU is responsible for international spectrum framework, including the protection of radio services
- Actual implementation of this framework is accomplished by national telecommunication administrations
- National telecommunication administrations work with relevant industries and stake holders
- ICG provides a forum that can facilitate and encourage the protection of GNSS spectrum by its members and participants in a voluntary, nonbinding way

ICG Working Groups

- Systems, Signals and Services (Co-Chairs: U.S. & Russia)
 - Focus on compatibility and interoperability, encouraging development of complimentary systems
 - Exchange information on systems and service provision plans
 - Includes spectrum protection and IDM
- Enhancement of GNSS Performance, New Services and Capabilities (Co-Chairs: India, European Space Agency, China)
 - Focus on system enhancements (multipath, integrity, interference, etc.) to meet future needs
- Capacity Building, Education and Outreach (Chair: UN Office for Outer Space Affairs)
 - Focus on training/workshops, promoting scientific applications, space weather
- Reference Frames, Timing and Applications (Co-Chairs: IAG, IGS & FIG)
 - Focus on timing, monitoring and reference station networks

Addressing Spectrum Protection and IDM within ICG

- Establishment of Compatibility Subgroup in 2011
 - Focused on compatibility issues to include spectrum protection and IDM
- Establishment of Interference Detection and Mitigation Task Force in 2013
 - Objectives include:
 - 1) Develop a common set of information to be reported to GNSS civil service centers
 - 2) Establish routine communications among the (provider service) centers
 - 3) Develop guidelines for common capabilities to be considered in the development of future national IDM networks
 - Ten (10) IDM Workshops held since 2012

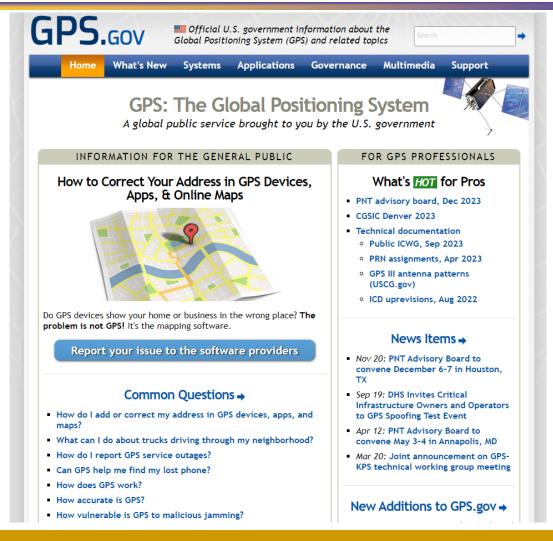
10th ICG Workshop on IDM

- Workshop held on o6 December 2022
- Agenda included:
 - Use of GPS by U.S. Coast Guard Navigation Center Coast Guard Navigation Center, United States
 - Sharing and Crowdsourcing GNSS Data to Monitor and Protect RF
 Environment Virginia Polytechnic Institute and State University
 - DOT Strategic Plan for GPS/GNSS Interference Detection Department of Transportation, United States
 - Critical Infrastructure Dependency on PNT Department of Homeland Security, United States
 - Use of ADS-B for Interference Detection EUROCONTROL
 - Characterization of ADS-B Performance under GNSS Interference Stanford University
 - Detecting GNSS Spoofing of ADS-B Equipped Aircraft Using INS Illinois Institute of Technology

ICG Recommendations Related to IDM and Spectrum Protection

Recent Recommendations Adopted by the ICG		
2014/2017	Crowdsourcing capabilities analysis for IDM	
2015/2016/2017	UN regional workshops on GNSS spectrum protection and IDM	
2015/2016	Campaign of Protection of RNSS operations – GNSS providers and GNSS user community member states promote spectrum protection	
2015/2016	UN COPUOS multi-year agenda item focused on National Efforts to protect RNSS Spectrum, and develop IDM capability	
2017	Encourage national regulators to use the protection criteria in relevant ITU-R Recommendations	
2019	Produce a draft booklet on GNSS/RNSS spectrum Protection based on material used for the ongoing spectrum seminars	
2022	Incorporating Resilience into GNSS Interference Detection and Mitigation	

Other Related Topics Discussed within the ICG



- Adjacent Band Compatibility
- Unintentional Interference
 - Electromagnetic emissions limits from non-licensed transmitters
- Interference Detection and Geo-Location Capabilities
- Critical Infrastructure

For Additional Information...

