

Introduction to Global Navigation Satellite System (GNSS) Service Providers

Dinesh Manandhar

Center for Spatial Information Science

The University of Tokyo

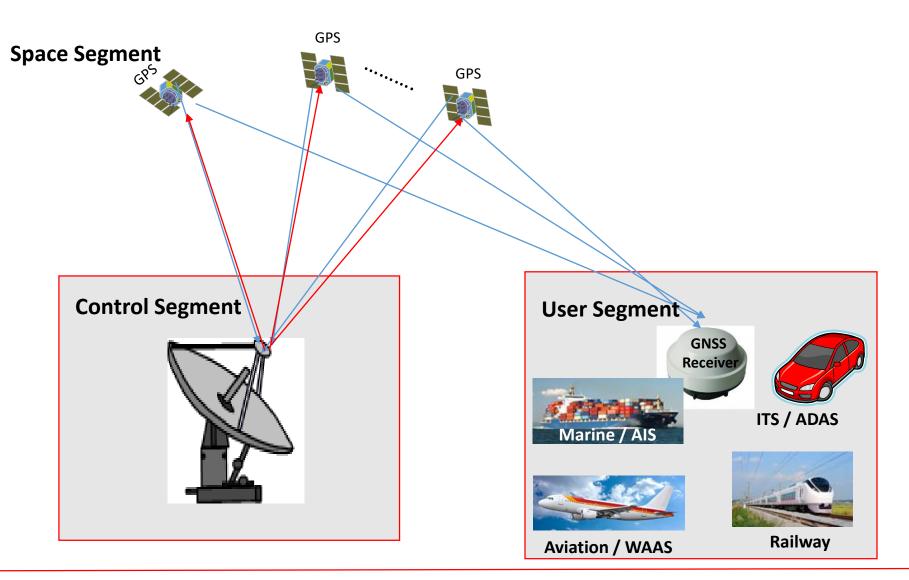
Contact Information: <u>dinesh@iis.u-Tokyo.ac.jp</u>

GPS (Global Positioning System) USA

History of GPS (1/2)

- Originally designed for military applications at the height of the Cold War in the 1960s, with inspiration coming from the launch of the Soviet spacecraft Sputnik in 1957.
- Transit was the first satellite system launched by the United States and tested by the US Navy in 1960.
 - Just five satellites orbiting the earth allowed ships to fix their position on the seas once every hour.
- GPS developed quickly for military purposes thereafter with a total of 11 "Block" satellites being launched between 1978 and 1985.
- The Reagan Administration in the us had the incentive to open up GPS for civilian applications in 1983. How to Drop Five Bombs from Different Aircrafts into the Same Hole?

(with an accuracy of 10m)


History of GPS (2/2)

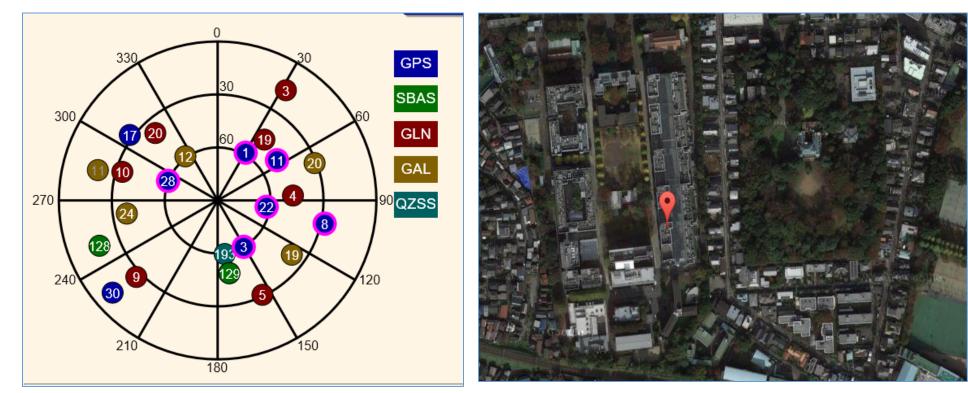
- Upgrading the GPS was delayed by NASA space shuttle Challenger disaster in 1989 and it was not until 1989 that the first Block II satellites were launched.
- By the summer of 1993, the US launched the 24th GPS satellite into orbit, which complete the modern GPS constellation of satellites.
- In 1995, it was declared fully operational.
- Today's GPS constellation has around 30 active satellites.
- GPS is used for dozens of navigation applications.
 - Route finding for driver, map-making, earthquake research, climate studies, and many other location based services.

GPS Segments

GPS Space Segment: Current & Future Constellation

Legacy	Satellites	Modernized Satellites			
Block IIA	Block IIR	Block IIR(M)	Block IIF	GPS III	
0 operational	12 operational	7 operational	12 operational	In production	
 L1C/A, L1 P(Y) L2P(Y) Launched in 1990- 1997 Last one decommissioned in 2016 	•L1C/A, L1P(Y) •L2P(Y) •Launched in 1997- 2004	•L1C/A, L1P(Y) •L2P(Y) •L2C, L2M •Launched in 2005- 2009	•L1C/A, L1P(Y) •L2P(Y) •L2C, L2M •L5 •Launched in 2010- 2016	 L1C/A, L1P(Y) L2P(Y) L2C, L2M L5 L1C Available for launch in 2016 	

http://www.gps.gov/systems/gps/space/#IIF https://en.wikipedia.org/wiki/Global_Positioning_System


GPS Signals

Band	Frequency, MHz	Signal Type	Code Length msec	Chip Rate, MHz	Modulation Type	Data / Symbol Rate, bps/sps	Notes
		C/A	1	1.023	BPSK	50	Legacy Signal
11	L1 1575.42	C _{Data}	10	1.023	BOC(1,1)	50 / 100	From 2014
LI		C _{Pilot}	10	1.023	ТМВОС	No Data	BOC(1,1) & BOC(6,1)
		P(Y)	7 days	10.23	BPSK		Restricted
		СМ	20	0.5115	DDC //	25 / 50	Modulated by TDM of
L2	L2 1227.60	CL	1500	0.5115	BPSK	No Data	(L2CM xor Data) and L2CL
		P(Y)	7days	10.23	BPSK		
15	L5 1176.45	I	1	10.23	BPSK	50 / 100	Provides Higher Accuracy
LJ		Q	1	10.25	DI SIX	No Data	

GPS Receiver Outputs (1/3)

Sky Plot: Visibility of Satellites at Receiver Antenna

Computed Position from GPS displayed over Google Map

GPS Receiver Outputs (2/3) GNSS Signals Received by the Receiver

AL	GPS	GLO	NASS	Galileo	ZSS SBAS	OMNI								
sv	Туре	Elev. [Deg]	Azim. [Deg]	L1-C/No [dBHz]	L1	L2-C/No [dBHz]	L2	L5-C/No [dBHz]	L5	E6-C/No [dBHz]	E6	IODE	URA [m]	Туре
1	GPS	57.51	31.89	42.7	CA	26.4/42.8	E/CM+CL	-	-	-	-	17	2	IIF
3	GPS	61.11	148.93	43.4	CA	27.4/43.9	E/CM+CL	-	-	-	-	17	2	IIF
8	GPS	26.97	103.42	37.3	CA	16.9/36.6	E/CM+CL	-	-	-	-	59	2	IIF
11	GPS	48.36	57.30	41.4	CA	22.3	E	-	-	-	-	83	4	IIR
17	GPS	28.92	307.48	37.9	CA	19.3/37.5	E/CM+CL	-	-	-	-	41	2	IIR-M
22	GPS	61.99	94.37	43.9	CA	26.8	E	-	-	-	-	49	2	IIR
28	GPS	60.44	288.95	43.0	CA	25.3	E	-	-	-	-	53	2.8	IIR
11	Galileo	20.59	285.13	-	-	-	-	-	-	-	-	-	-	-
12	Galileo	59.51	325.63	41.5	CBOC	-	-	-/40.6/40.2	-/B/Alt	-	-	-	-	-
19	Galileo	38.81	125.12	37.7	CBOC	-	-	-/33.8/33.3	-/B/Alt	-	-	-	-	-
20	Galileo	31.05	67.70	33.9	CBOC	-	-	-	-	-	-	-	-	-
24	Galileo	37.41	260.41	40.9	CBOC	-	-	-/40.2/39.9	-/B/Alt	-	-	-	-	-
3	GLONASS	15.60	30.81	33.7/32.3	CA/P	32.3	CA	-	-	-	-	29	2.5	М
4	GLONASS	47.52	83.80	40.5/39.4	CA/P	38.1	CA	-	-	-	-	29	7	М
5	GLONASS	32.37	153.94	32.3/31.0	CA/P	31.0	CA	-	-	-	-	29	2.5	М
9	GLONASS	25.40	225.73	35.6/34.4	CA/P	36.4	CA	-	-	-	-	29	10	М
10	GLONASS	33.33	284.69	39.0/37.6	CA/P	30.9	CA	-	-	-	-	29	4	М
19	GLONASS	46.12	39.85	37.1/35.9	CA/P	36.9	CA	-	-	-	-	29	4	М
20	GLONASS	38.75	318.99	33.0/30.7	CA/P	37.4	CA	-	-	-	-	29	10	М
193	QZSS	59.95	172.80	40.9/42.0/40.7	CA/BOC/SAIF	40.4	CM+CL	-	-	29.2	LEX	212	2	-
128	SBAS	18.24	249.03	32.4	CA	-	-	-	-	-	-	158	4096	-
129	SBAS	48.27	170.87	34.3	CA	-	-	-	-	-	-	124	4096	-
137	SBAS	48.27	170.87	34.1	CA	-	-	-	-	-	-	46	16	-
140	SBAS	-45.00	0.00	35.5	CA	-	-	-	-	-	-	55	N/A	-
141	SBAS	-45.00	0.00	-	-	-	-	-	-	-	-	-	-	-

Sis Center for Spatial Information Science The University of Tokyo

GPS Receiver Outputs (3/3)

Position, Velocity, Time (PVT) and Other Observation Related Outputs

Position:

Lat: 35° 39' 40.85496" N Lon: 139° 40' 41.32632" E Hgt: 118.521 [m] Type: Autonomous Datum: WGS-84

Velocity:

East: 0.01 [m/s] North: -0.01 [m/s] Up: -0.02 [m/s]

Position Solution Detail:

Position Dimension: 3D Augmentation: GPS+GLN+GAL+QZSS Height Mode: Normal Correction Controls: Off

Satellites Used:19

GPS(7):1, 3, 8, 11, 17, 22, 28GLONASS(8):3, 4, 5, 9, 10, 11, 19, 20Galileo(3):12, 19, 24QZSS(1):193

Satellites Tracked:23

GPS (7):1, 3, 8, 11, 17, 22, 28GLONASS (8):3, 4, 5, 9, 10, 11, 19, 20Galileo (4):12, 19, 20, 24SBAS (3):128, 137, 140QZSS (1):193

Receiver Clock:

GPS Week: 1910 GPS Seconds: 447816 Offset: 0.00001 [msec] Drift: 0.00007 [ppm]

Multi-System Clock Offsets:

Master Clock System:GPSGLONASS Offset:97.2 [ns]Galileo Offset:0.5 [ns]GLONASS Drift:-0.044 [ns/s]Galileo Drift:0.003 [ns/s]

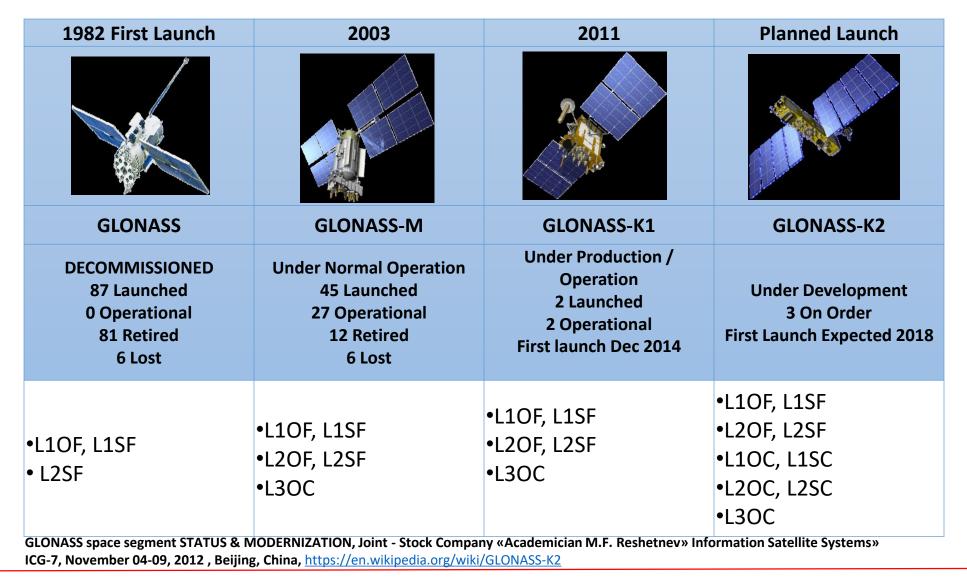
Dilutions of Precision:

PDOP: 1.5 HDOP: 0.7 VDOP: 1.3 TDOP: 1.1

Error Estimates(1σ):

East: 0.878 [m] North: 1.123 [m] Up: 2.691 [m] Semi Major Axis: 1.155 [m] Semi Minor Axis: 0.834 [m] Orientation: 19.9°

Dinesh Manandhar, CSIS, The University of Tokyo, dinesh@iis.u-tokyo.ac.jp



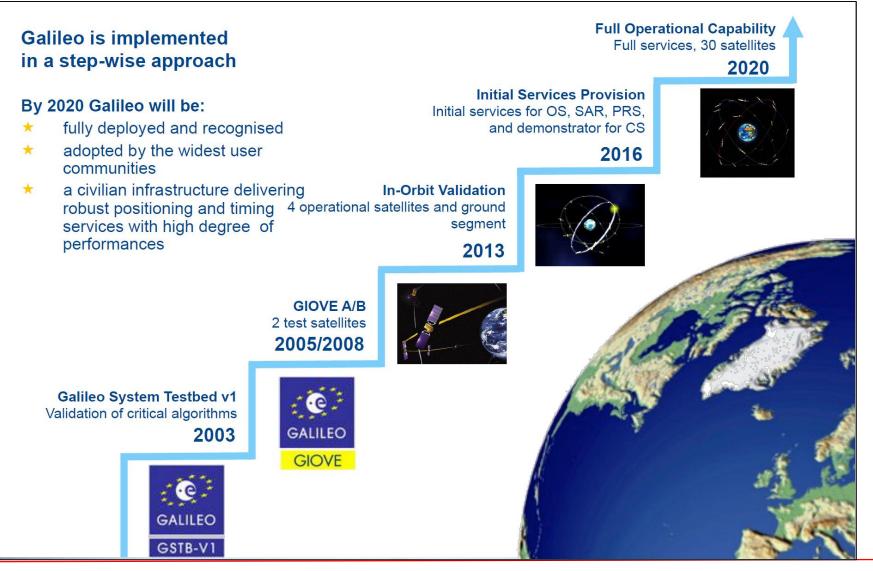
GLONASS (Global Navigation Satellite System) Russia

GLONASS Current & Future Constellation

Dinesh Manandhar, CSIS, The University of Tokyo, dinesh@iis.u-tokyo.ac.jp

GLONASS FDMA Signals

- L1 Band 1598.0625 1604.40 MHz
 - 1602 MHz + *n* × 0.5625 MHz
 - where *n* is a satellite's frequency channel number (*n*=–7,–6,–5,...,7).
- L2 Band 1242.9375 1248.63 MHz
 - 1246 MHz + *n*×0.4375 MHz

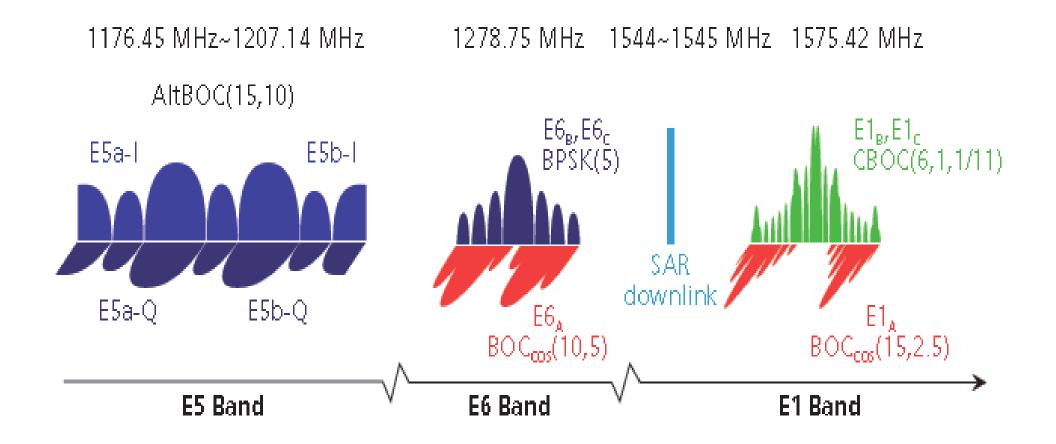


Galileo, Europe

Galileo Space Segment

Dinesh Manandhar, CSIS, The University of Tokyo, dinesh@iis.u-tokyo.ac.jp

Galileo Signals

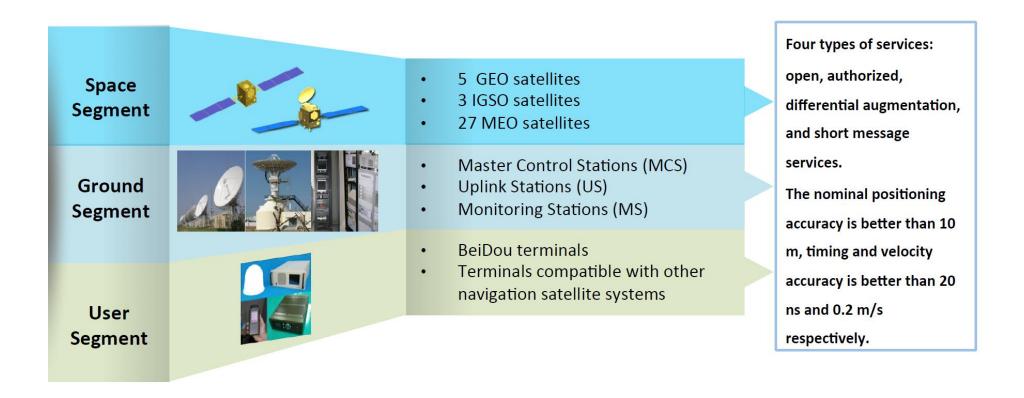

Band	Frequenc y, MHz	Signal Type	Code Length msec	Chip Rate, MHz	Modulation Type	Data / Symbol Rate, bps/sps	Notes
		А	10	10.23	BOC(15,2.5)	??	Restricted
E1	1575.42	B _{Data}	4	1.023	CBOC, Weighted	125 / 250	Data
		C _{Pilot}	100	1.023	combination of BOC(1,1) & BOC(6,1)	No Data	Pilot
		А	10	5.115	BOC(15,5)	??	PRS
E6	E6 1278.75	В	1	5.115	BPSK(5)	500 / 1000	Data
		С	100	5.115		No Data	Pilot
	1170 45	A-I	20	10.23		25 / 50	Data
E5 1191		A-Q	100	10.23		No Data	Pilot
.795		B-I	4	10.23	AltBOC(15,10)	125 / 250	Data
		B-Q	100	10.23		No Data	Pilot

Slide : 16

Galileo Signals

Galileo Services

Open Service (OS)	Freely accessible service for positioning, navigation and timing for mass market	-
Commercial Service (CS)	Delivers authentication, high accuracy and guaranteed services for commercial applications	Billi
Public Regulated Service (PRS)	Encrypted service designed for greater robustness in challenging environments	-
Search And Rescue Service (SAR)	Locates distress beacons and confirms that message is received	CAR -
Safety of Life Service (SoL)	The former Safety of Life service is being re-profiled	



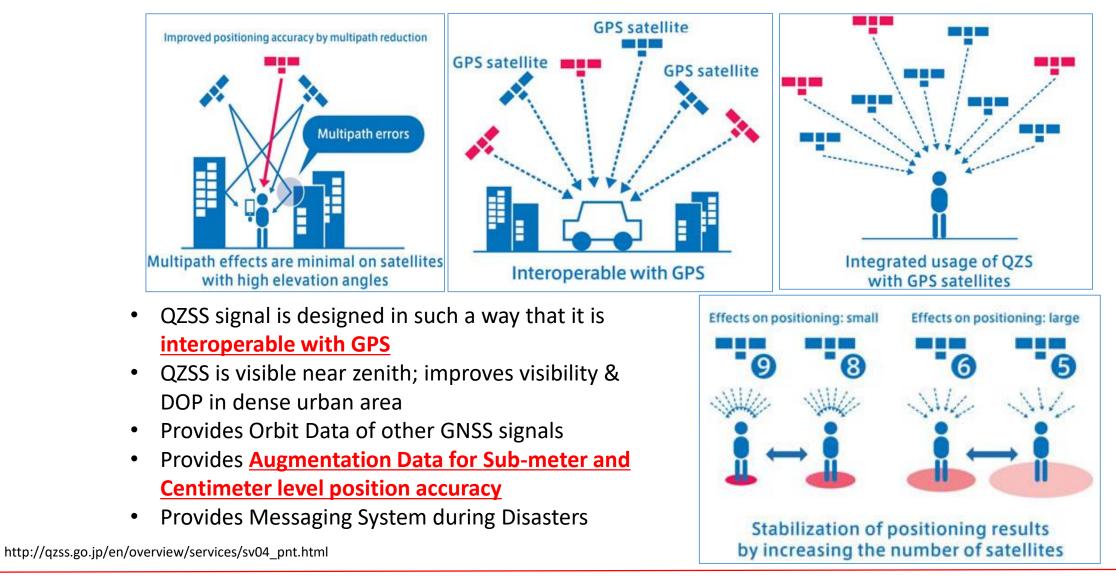
BeiDou, China

BeiDou Space Segment

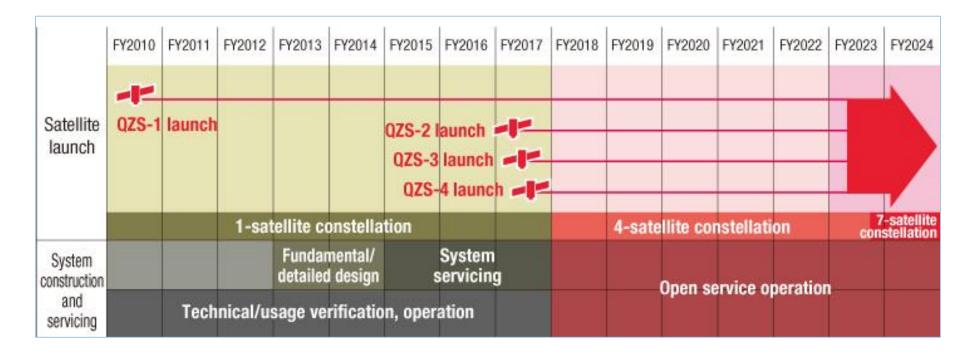
Source: Update on BeiDou Navigation Satellite System, Chengqi Ran, China Satellite Navigation Office Tenth Meeting of ICG, NOV 2015

COMPASS / BEIDOU Signals: Already Transmitted

Band	Frequency MHz	Signal Type	Chip Rate (MHz)	Modulation Type	Data / Symbol rate	Notes
	1561.098	B1(I)	2.046	QPSK	50 / 100	Open
B1		B1(Q)	2.010		None	Authorized
51	1589.742	B1-2(I)	2.046	QPSK	50 / 100	Open
	1389.742	B1-2(Q)		2.040	QF3K	25 / 50
В2	1207.14	B2(I)	2.046	QPSK	None	Open
DZ		B2(Q)	10.23		50 / 100	Authorized
B3	1268.52	B3	10.23	QPSK	500	Authorized

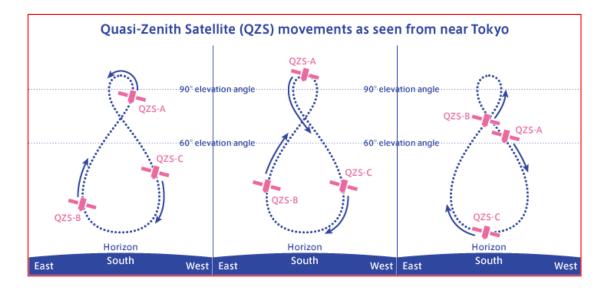


QZSS (Quasi-Zenith Satellite System) Japan


Merits of QZSS

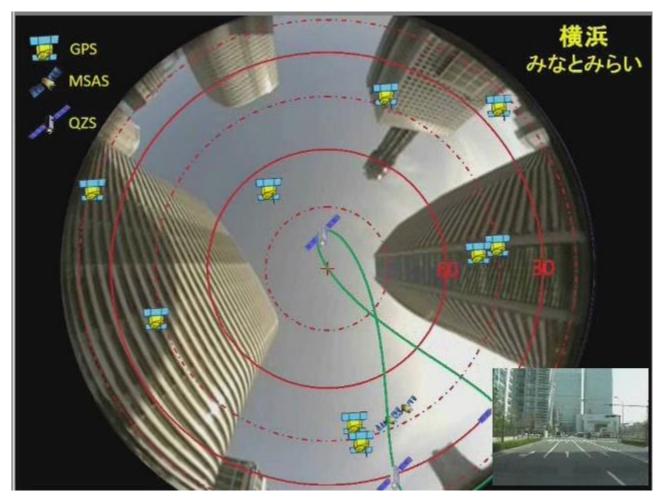
QZSS Development Plan

- 1st Satellite launched on 11th September 2010: QZ2nd Satellite launched on 1st June 2017: QZ3rd Satellite launched on 19th August 2017: Ge
 - : QZ Orbit
 - : QZ Orbit
 - : Geostationary Orbit



QZSS Constellation Status

- Current Status
 - One Satellite launched on 11th SEP 2010
- Total constellation of Seven Satellites
 - Three more satellites were launched by the end of 2017



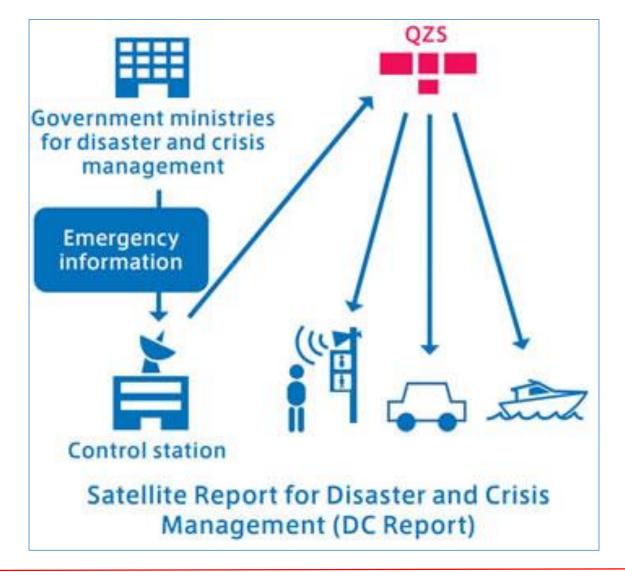
QZSS Satellite Visibility

Source: SPAC Animation Video

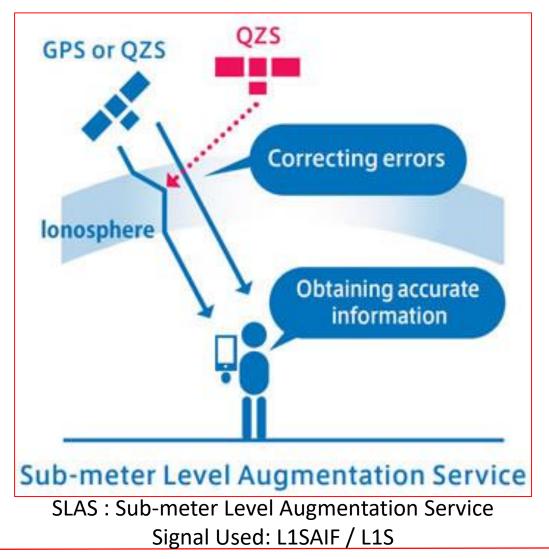
Center for Spatial Information Science The University of Tokyo QZSS Satellites & Signal Types

	QZS-1	QZS-2 t	o QZS-4		
Signal	Block IQ	Block IIQ	Block IIG		Center
Name	(QZO)	(QZO)	(GEO)	Transmission service	Frequency MHz
	1	2	1		
L1C/A	Ô	Ô	Ô	Satellite positioning service	
L1C	Ô	Ô	Ô	Satellite positioning service	
L1SAIF	Ø			Sub-meter Level Augmentation Service	1575.42
L1S		Ô	Ø	(SLAS) / Disaster and Crisis Management	1373.42
L1Sb	-	-	Ø	SBAS Transmission Service from around 2020	
L2C	Ô	Ô	Ø	Satellite positioning service	1227.60
L5	Ô	Ô	O	Satellite positioning service	
L5S	-	Ø	Ø	Positioning Technology Verification Service	1176.45
LEX	Ô			MADOCA	1278.75
L6		Ø	Ø	Centimeter Level Augmentation Service (CLAS)	
S-band	-	-	Ø	QZSS Safety Service / SAR	2GHz

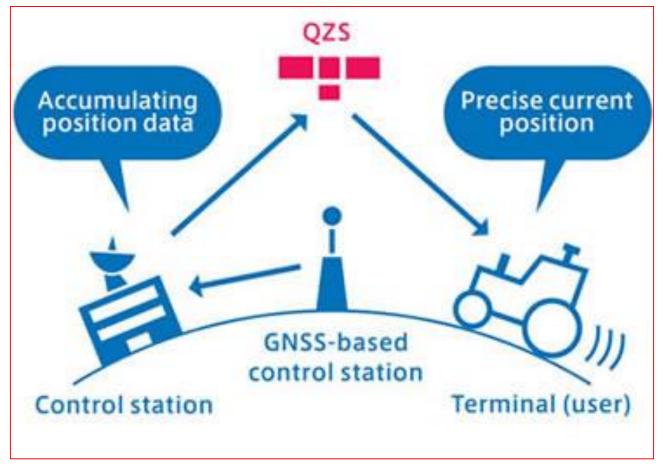
QZSS New Applications


QZSS New Applications

- Short Message Broadcast during Emergencies and Disasters
 - L1SAIF / L1S Signals
- Sub-meter Level Augmentation Service (SLAS)
 - L1SAIF / L1S / L1Sb Signals
- Centimeter Level Augmentation Service (CLAS)
 - L6 Signal
 - PPP-RTK
 - LEX Signal : MADOCA Service
 - PPP


Short Message Broadcast during Disaster

Sub-meter Level Augmentation Service (SLAS)



Dinesh Manandhar, CSIS, The University of Tokyo, dinesh@iis.u-tokyo.ac.jp

Centimeter Level Augmentation Service (CLAS)

CLAS : Centimeter Level Augmentation Service Signal Used: LEX: MADOCA & L6

NAVIC, India (Indian Regional Navigation Satellite System)

IRNSS Signal Types

Signal	Carrier Frequency	Bandwidth
L5	1176.45MHz	24MHz
S	2492.028MHz	16.5MHz